This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366036 #8 Feb 16 2025 08:34:06 %S A366036 0,1,9,127,2165,40914,824859,17383720,378373437,8440227235, %T A366036 191938302578,4433259845898,103716352560119,2452629475989840, %U A366036 58529969579982600,1407775987050271920,34092047564798908045,830565580516900384329,20342106952028722530603,500573735323751221019425,12370242700776737398052970 %N A366036 G.f. A(x) satisfies: A(x) = x * (1 + A(x))^5 / (1 - 4 * A(x)). %C A366036 Reversion of g.f. for 4-dimensional figurate numbers A002418 (with signs). %H A366036 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SeriesReversion.html">Series Reversion</a> %F A366036 a(n) = (1/n) * Sum_{k=0..n-1} binomial(n+k-1,k) * binomial(5*n,n-k-1) * 4^k for n > 0. %F A366036 a(n) ~ sqrt(34*sqrt(6) - 81) * 2^(n - 11/4) * 3^(n - 5/4) * (3/2 - 1/sqrt(6))^(5*n) / (sqrt(Pi) * n^(3/2) * (3*sqrt(6) - 7)^n). - _Vaclav Kotesovec_, Sep 27 2023 %t A366036 nmax = 20; A[_] = 0; Do[A[x_] = x (1 + A[x])^5/(1 - 4 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] %t A366036 CoefficientList[InverseSeries[Series[x (1 - 4 x)/(1 + x)^5, {x, 0, 20}], x], x] %t A366036 Join[{0}, Table[1/n Sum[Binomial[n + k - 1, k] Binomial[5 n, n - k - 1] 4^k, {k, 0, n - 1}], {n, 1, 20}]] %Y A366036 Cf. A002294, A002418, A064088, A365668, A365755, A365817, A366016, A366035, A366037. %K A366036 nonn %O A366036 0,3 %A A366036 _Ilya Gutkovskiy_, Sep 26 2023