cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366046 Expansion of (1/x) * Series_Reversion( x*(1-x+x^5) ).

This page as a plain text file.
%I A366046 #13 Dec 04 2023 06:02:21
%S A366046 1,1,2,5,14,41,124,384,1210,3861,12434,40313,131332,429250,1405696,
%T A366046 4606898,15093714,49386035,161204470,524361475,1697564726,5461804480,
%U A366046 17433977340,55085418075,171777442668,526480895241,1576234101044,4565064570082,12573573588000
%N A366046 Expansion of (1/x) * Series_Reversion( x*(1-x+x^5) ).
%C A366046 a(32) is negative.
%F A366046 a(n) = (1/(n+1)) * Sum_{k=0..floor(n/5)} (-1)^k * binomial(n+k,k) * binomial(2*n-4*k,n-5*k).
%F A366046 D-finite with recurrence
%F A366046 +2869*n*(n-1)*(n-2)*(n-3) *(1677311589006610608643886320559970*n
%F A366046 -7901147144447740888530692468785127)*(n+1)*a(n)
%F A366046 +n*(n-1)*(n-2)*(n-3)
%F A366046 *(4812206948859965836199309853686553930*n^2
%F A366046 -175013553719393167658676882522877604813*n
%F A366046 +722425524622711754521906472526821274049)*a(n-1)
%F A366046 -6*(n-1)*(n-2)*(n-3)*(38041469564276713074625931629796582292*n^3
%F A366046 -434187019812974222921305047255132800148*n^2
%F A366046 +1511627766181757985191668395762224462787*n
%F A366046 -1439281919744399515865257001890323358373)*a(n-2)
%F A366046 +24*(n-2)*(n-3)*(23107055333611559369905978901014910472*n^4
%F A366046 -291637186969535206075427515674585653736*n^3
%F A366046 +1307639647775331737625407609014469136258*n^2
%F A366046 -2417805672147912309219658141920321176114*n
%F A366046 +1512007871663508796078252300169686470055)*a(n-3)
%F A366046 -1440*(n-3)*(84804544319929041737751787189252800*n^5
%F A366046 -1067895117008250068418057111395610000*n^4
%F A366046 +3937834774286868181364955550730022660*n^3
%F A366046 +975312620367454094109649406073471780*n^2
%F A366046 -32021390554042442142065879328318104181*n
%F A366046 +47001806684644394483446146792519879754)*a(n-4)
%F A366046 +72*(755178462485403935795686391926983696*n^6
%F A366046 -9721973068673624889003370906133735808*n^5
%F A366046 +28265101220259707812286453812712428560*n^4
%F A366046 +142279853462074595032386388289908608780*n^3
%F A366046 -1109234048552890437383368746114907399821*n^2
%F A366046 +2608361246800778163937859213150591740973*n
%F A366046 -2164380627302236226723222549578816128130)*a(n-5)
%F A366046 +48600*(6*n-31)*(3*n-13)*(759087266352800004971495991151992*n^4
%F A366046 -9778945772952612092782558107378828*n^3
%F A366046 +46005785870710778199033560834476886*n^2
%F A366046 -93708439282239876819273711147715309*n
%F A366046 +69918682390077087204827334331319595)*a(n-6)
%F A366046 +139968*(6*n-37)*(3*n-16)*(2*n-11)*(888737373518089148784593470818*n
%F A366046 -3184979270877227150713537195033)*(3*n-14)*(6*n-29)*a(n-7)=0. # _R. J. Mathar_, Dec 04 2023
%p A366046 A366046 := proc(n)
%p A366046     add((-1)^k * binomial(n+k,k) * binomial(2*n-4*k,n-5*k),k=0..floor(n/5)) ;
%p A366046     %/(n+1) ;
%p A366046 end proc:
%p A366046 seq(A366046(n),n=0..70) ; # _R. J. Mathar_, Dec 04 2023
%o A366046 (PARI) a(n) = sum(k=0, n\5, (-1)^k*binomial(n+k, k)*binomial(2*n-4*k, n-5*k))/(n+1);
%Y A366046 Cf. A063028, A063033.
%Y A366046 Cf. A276989, A366024.
%K A366046 sign
%O A366046 0,3
%A A366046 _Seiichi Manyama_, Sep 27 2023