This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366063 #13 Feb 25 2025 20:43:54 %S A366063 1,1,1,2,1,2,2,1,3,4,0,4,6,1,5,9,1,6,11,4,1,8,20,2,0,10,25,7,0,12,37, %T A366063 6,1,15,47,13,2,18,67,15,1,22,85,25,3,27,122,26,1,32,142,46,10,1,38, %U A366063 200,53,6,0,46,259,74,6,0,54,330,92,13,1,64,412,136 %N A366063 Irregular triangle read by rows: T(n,k) is the number of partitions of n that have depth k. %C A366063 Suppose that P is a partition of n. Let x(1), x(2),...,x(k) be the distinct parts of P, and let m(i) be the multiplicity of x(i) in P. Let f(P) be the partition [m(1)*x(1), m(2)*x(2),...,x(k)*m(k)] of n. Define c(0,P) = P, c(1,P) = f(P), ..., c(n,P) = f(c(n-1,P)), and define d(P) = least n such that c(n,P) has no repeated parts; d(P) is as the depth of P, as defined in A237685. Clearly d(P) = 0 if and only if P is a strict partition, as in A000009. Conjecture: if d >= 0, then 2^d is the least n that has a partition of depth d. %e A366063 First 20 rows: %e A366063 1 %e A366063 1 1 %e A366063 2 1 %e A366063 2 2 1 %e A366063 3 4 0 %e A366063 4 6 1 %e A366063 5 9 1 %e A366063 6 11 4 1 %e A366063 8 20 2 0 %e A366063 10 25 7 0 %e A366063 12 37 6 1 %e A366063 15 47 13 2 %e A366063 18 67 15 1 %e A366063 22 85 25 3 %e A366063 27 122 26 1 %e A366063 32 142 46 10 1 %e A366063 38 200 53 6 0 %e A366063 46 259 74 6 0 %e A366063 54 330 92 13 1 %e A366063 64 412 136 15 0 %t A366063 z = 36; c[n_] := c[n] = Map[Length[FixedPointList[Sort[Map[Total, Split[#]], Greater] &, #]] - 2 &, IntegerPartitions[n]] %t A366063 t = Table[Count[c[n], k], {n, 1, z}, {k, 0, Floor[Log[2, n]]}] %t A366063 TableForm[t] (* this sequence as an array *) %t A366063 Flatten[t] (* this sequence *) %Y A366063 Cf. A000009, A000041, A237685 (column 1), A237750 (column 2), A237978 (column 3), A225485 (frequency depth array). %K A366063 nonn,tabf %O A366063 1,4 %A A366063 _Clark Kimberling_, Sep 28 2023