cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366064 Record values of A366091.

This page as a plain text file.
%I A366064 #9 Sep 29 2023 02:18:32
%S A366064 1,2,3,4,5,7,8,11,15,16,19,21,23,24,25,28,32,33,34,39,48,50,60,64,65,
%T A366064 74,78,79,84,90,92,96,102,104,112,113,129,133,136,137,149,153,163,165,
%U A366064 176,178,190,192,196,200,209,226,237,244,253,273,284,299,316,317,320,329,347,360,361,380,385
%N A366064 Record values of A366091.
%C A366064 Numbers m such that for some v, there are exactly m ways to write v = i^2 + 2*j^2 + 3*k^2 with i,j,k >= 0, and fewer than m ways to write w = i^2 + 2*j^2 + 3*k^2 for every w < v.
%F A366064 a(n) = A366091(A366065(n)).
%e A366064 a(6) = 7 is a term because 36 = 6^2 + 2*0^2 + 3*0^2 = 2^2 + 2*4^2 + 3*0^2
%e A366064 = 5^2 + 2*2^2 + 3*1^2 = 1^2 + 2*4^2 + 3*1^2 = 4^2 + 2*2^2 + 3*2^2 = 3^2 + 2*0^2 + 3*3^2 = 1^2 + 2*2^2 + 3*3^2 can be written as i^2 + 2*j^2 + 3*k^2 in 7 ways, and all numbers < 36 can be written in fewer than 7 ways.
%p A366064 g:= add(z^(i^2),i=0..500) * add(z^(2*i^2),i=0..floor(500/sqrt(2))) *
%p A366064 add(z^(3*i^2),i=0..floor(500/sqrt(3))):
%p A366064 S:= series(g,z,250001):
%p A366064 L:= [seq(coeff(S,z,i),i=0..250000)]:
%p A366064 B:= NULL: m:= 0:
%p A366064 for i from 1 to 250001 do
%p A366064   if L[i] > m then
%p A366064      m:= L[i]; B:=B,m
%p A366064   fi
%p A366064 od:
%p A366064 B;
%Y A366064 Cf. A366065, A366091.
%K A366064 nonn
%O A366064 1,2
%A A366064 _Robert Israel_, Sep 28 2023