This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366065 #11 Sep 29 2023 02:45:55 %S A366065 0,3,9,12,30,36,81,84,156,228,246,324,396,444,516,534,606,774,804,876, %T A366065 1164,1614,1884,2046,2244,2676,3564,3684,3756,4134,4404,4764,5124, %U A366065 5646,6636,6654,6924,7716,8166,8724,9804,10686,11334,12324,12846,13476,15654,17004,17796,18804,20406,20694,21036 %N A366065 Positions of records in A366091. %C A366065 Numbers that can be written in the form i^2 + 2*j^2 + 3*k^2 with i,j,k >= 0 in more ways than any previous number. %F A366065 A366091(a(n)) = A366064(n). %e A366065 a(6) = 36 is a term because 36 = 6^2 + 2*0^2 + 3*0^2 = 2^2 + 2*4^2 + 3*0^2 %e A366065 = 5^2 + 2*2^2 + 3*1^2 = 1^2 + 2*4^2 + 3*1^2 = 4^2 + 2*2^2 + 3*2^2 = 3^2 + 2*0^2 + 3*3^2 = 1^2 + 2*2^2 + 3*3^2 can be written as i^2 + 2*j^2 + 3*k^2 in 7 ways, and all numbers < 36 can be written in fewer than 7 ways. %p A366065 g:= add(z^(i^2),i=0..500) * add(z^(2*i^2),i=0..floor(500/sqrt(2))) * %p A366065 add(z^(3*i^2),i=0..floor(500/sqrt(3))): %p A366065 S:= series(g,z,250001): %p A366065 L:= [seq(coeff(S,z,i),i=0..250000)]: %p A366065 A:= NULL: m:= 0: %p A366065 for i from 1 to 250001 do %p A366065 if L[i] > m then %p A366065 m:= L[i]; A:=A,i-1 %p A366065 fi %p A366065 od: %p A366065 A; %Y A366065 Cf. A366064, A366091. %K A366065 nonn %O A366065 1,2 %A A366065 _Robert Israel_, Sep 28 2023