cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366066 a(n) is the largest positive integer k such that n can be expressed as the sum of k distinct positive integers that are coprime to each other.

Original entry on oeis.org

0, 1, 1, 2, 2, 2, 3, 2, 3, 3, 3, 4, 3, 4, 3, 4, 4, 4, 5, 4, 5, 4, 5, 4, 5, 5, 5, 5, 5, 6, 5, 6, 5, 6, 5, 6, 6, 6, 6, 6, 6, 6, 7, 6, 7, 6, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 7, 8, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 8, 9, 9, 9, 9, 9, 9, 9
Offset: 0

Views

Author

Yifan Xie, Sep 28 2023

Keywords

Comments

The indices at which k first appears, for k >= 0: 1, 3, 6, 11, 18, 29, 42, 59, 78 (A014284). Such n's are expressed as the sum of 1 and the first primes.
Runs with length >= 2 start at numbers k^2 - 1 (k >= 2).
If there are terms between runs of k and k+1, these two numbers occur alternately. Suppose that m is such a term that is b(m) terms after the first occurrence of k+1; if b(m) is odd, there are at least two even numbers in the expression of n as the sum of k+1 integers, which are not coprime to each other, so a(m) = k.

Examples

			For n = 11, 1+2+3+5=11; so a(11) = 4.
For n = 12, 1+4+7=12; so a(12) = 3.
		

Crossrefs

Programs

  • PARI
    lista(nn) = v=[0]; f=[7, 12, 14, 19, 21, 23, 30, 32, 34, 43, 45, 47, 60, 62, 79]; for(n=1, nn, for(i=1, prime(n), v=concat(v, n))); for(n=1, 15, v[f[n]+1]=v[f[n]+1]-1); v;

Formula

a(n) = A083375(n) - 1 if and only if n = 7, 12, 14, 19, 21, 23, 30, 32, 34, 43, 45, 47, 60, 62, 79; otherwise, a(n) = A083375(n).