This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366072 #5 Sep 28 2023 03:41:05 %S A366072 5,8,4,2,7,8,3,2,1,4,7,6,3,5,2,0,3,2,8,4,7,3,5,0,4,2,9,2,5,3,6,4,3,5, %T A366072 0,9,0,3,3,4,1,7,8,0,0,7,7,3,2,8,4,0,6,1,8,4,5,7,7,4,2,4,3,5,5,8,8,2, %U A366072 0,3,1,4,0,9,8,5,9,2,7,0,5,3,7,5,2,1,4,2,8,3,5,6,2,2,5,0,6,4,3,0,0,1,4,3,4 %N A366072 Decimal expansion of a constant related to the asymptotics of A307399. %F A366072 Equals limit n->infinity A307399(n)^(1/n). %e A366072 5.84278321476352032847350429253643509033417800773284061845774243558820314... %t A366072 val = r /. FindRoot[{1 + (Log[1 - r*s] + QPolyGamma[0, 1, r*s])/Log[r*s] == s + r*s*Derivative[0, 1][QPochhammer][r*s, r*s] / QPochhammer[r*s], (-4*r*s*ArcTanh[1 - 2*r*s] + s*(1 - r*s)*Log[r*s]^2 + 2*Log[1 - r*s]) / (-1 + r*s) - 2*QPolyGamma[0, 1, r*s] + ((1 - s)*Log[r*s] + Log[1 - r*s] + QPolyGamma[0, 1, r*s])^2 - QPolyGamma[1, 1, r*s] + 2*r*s*Log[r*s]*Derivative[0, 0, 1][QPolyGamma][0, 1, r*s] == (-1 + 1/s + Log[1 - r*s]/(s*Log[r*s]) + QPolyGamma[0, 1, r*s]/(s*Log[r*s]) + r^2*s*Derivative[0, 2][QPochhammer][r*s, r*s] / QPochhammer[r*s])*s* Log[r*s]^2}, {r, 1/6}, {s, 2}, WorkingPrecision -> 90]; N[1/Chop[val], -Floor[Log[10, Abs[Im[val]]]] - 3] %Y A366072 Cf. A307399, A307401, A192206. %K A366072 nonn,cons %O A366072 1,1 %A A366072 _Vaclav Kotesovec_, Sep 28 2023