This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366073 #16 Feb 19 2025 12:34:48 %S A366073 0,0,0,1,0,0,0,1,1,0,0,1,0,0,0,2,0,1,0,1,0,0,0,1,1,0,1,1,0,0,0,2,0,0, %T A366073 0,2,0,0,0,1,0,0,0,1,1,0,0,2,1,1,0,1,0,1,0,1,0,0,0,1,0,0,1,2,0,0,0,1, %U A366073 0,0,0,2,0,0,1,1,0,0,0,2,2,0,0,1,0,0,0 %N A366073 The number of composite "Fermi-Dirac primes" (A082522) dividing n. %C A366073 First differs from A071325 at n = 36. %C A366073 The number of "Fermi-Dirac primes" that are infinitary divisors of n is A064547(n). %H A366073 Amiram Eldar, <a href="/A366073/b366073.txt">Table of n, a(n) for n = 1..10000</a> %F A366073 Additive with a(p^e) = floor(log_2(e)) = A000523(e). %F A366073 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=1} P(2^k) = 0.53331724743088069672..., where P(s) is the prime zeta function. %t A366073 f[p_, e_] := Floor[Log2[e]]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] %o A366073 (PARI) a(n) = vecsum(apply(exponent, factor(n)[, 2])); %o A366073 (Python) %o A366073 from sympy import factorint %o A366073 def A366073(n): return -len(f:=factorint(n).values())+sum(map(int.bit_length,f)) # _Chai Wah Wu_, Feb 19 2025 %Y A366073 Cf. A000523, A050376, A064547, A071325, A082522, A366074. %K A366073 nonn,easy %O A366073 1,16 %A A366073 _Amiram Eldar_, Sep 28 2023