cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A366074 The number of "Fermi-Dirac primes" (A050376) that are unitary divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 0, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 1, 1, 2, 0, 2, 1, 3, 1, 0, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 3, 1, 2, 2, 0, 2, 3, 1, 2, 2, 3, 1, 1, 1, 2, 2, 2, 2, 3, 1, 2, 1, 2, 1, 3, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Sep 28 2023

Keywords

Comments

First differs from A293439 at n = 128.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[e == 2^IntegerExponent[e, 2], 1, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecsum(apply(x -> (x == 1 << valuation(x, 2)), factor(n)[, 2]));

Formula

Additive with a(p^e) = A209229(e).
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = -P(2) + Sum_{k>=1} (P(2^k) - P(2^k+1)) = -0.13145993422430119364..., where P(s) is the prime zeta function.

A362412 The number of prime factors of the square root of the largest square dividing n, counted with multiplicity.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Sep 28 2023

Keywords

Comments

First differs from A366073 at n = 64.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := Floor[e/2]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecsum(factor(n)[, 2]\2);

Formula

a(n) = A001222(A000188(n)).
a(n) = A001222(A008833(n))/2.
Additive with a(p^e) = floor(e/2) = A004526(e).
a(n) >= 0, with equality if and only if n is squarefree (A005117).
a(n) <= A001222(n)/2, with equality if and only if n is square (A000290).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} 1/(p^2-1) = 0.551693... (A154945).
a(n) = (A001222(n) - A162642(n))/2. - Ridouane Oudra, Apr 19 2025
Showing 1-2 of 2 results.