cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366075 The number of primes dividing the smallest coreful infinitary divisor of n, counted with multiplicity.

This page as a plain text file.
%I A366075 #12 Sep 29 2023 04:09:51
%S A366075 0,1,1,2,1,2,1,1,2,2,1,3,1,2,2,4,1,3,1,3,2,2,1,2,2,2,1,3,1,3,1,1,2,2,
%T A366075 2,4,1,2,2,2,1,3,1,3,3,2,1,5,2,3,2,3,1,2,2,2,2,2,1,4,1,2,3,2,2,3,1,3,
%U A366075 2,3,1,3,1,2,3,3,2,3,1,5,4,2,1,4,2,2,2
%N A366075 The number of primes dividing the smallest coreful infinitary divisor of n, counted with multiplicity.
%H A366075 Amiram Eldar, <a href="/A366075/b366075.txt">Table of n, a(n) for n = 1..10000</a>
%F A366075 a(n) = A001222(A365296(n)).
%F A366075 Additive with a(p^e) = A006519(e).
%F A366075 a(n) = 1 if and only if n is in A246551.
%F A366075 Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = 0.42540262231508387576..., where f(x) = -x + (1-x) * Sum_{k>=0} (2^(k+1)-1)*x^(2^k)/(1+x^(2^k)).
%t A366075 f[p_, e_] := 2^IntegerExponent[e, 2]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A366075 (PARI) a(n) = vecsum(apply(x -> 2^valuation(x, 2), factor(n)[, 2]));
%Y A366075 Cf. A001222, A006519, A246551, A365296.
%K A366075 nonn,easy
%O A366075 1,4
%A A366075 _Amiram Eldar_, Sep 28 2023