cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366076 The number of prime factors of the largest divisor of n that is a cubefull number (A036966), counted with multiplicity.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 3, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, 4, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Sep 28 2023

Keywords

Comments

The sum of exponents larger than 2 in the prime factorization of n.
The number of distinct prime factors of the largest divisor of n that is a cubefull number is A295659(n).

Crossrefs

Similar sequence: A275812 (number of prime factors of the powerful part).

Programs

  • Mathematica
    f[p_, e_] := If[e < 3, 0, e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = vecsum(apply(x -> if(x < 3, 0, x), factor(n)[, 2]));

Formula

a(n) = A001222(A360540(n)).
a(n) = A001222(n) - A366077(n).
Additive with a(p^e) = 0 if e <= 2, and a(p^e) = e for e >= 3.
a(n) >= 0, with equality if and only if n is cubefree (A004709).
a(n) <= A001222(n), with equality if and only if n is cubefull (A036966).
a(n) >= 3*A295659(n), with equality if and only if n is a biquadratefree number (A046100).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{p prime} (2/p^3 + 1/(p^2*(p-1))) = 2 * A085541 + A152441 = 0.67043452760761670220... .