This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366078 #7 Sep 29 2023 04:06:39 %S A366078 0,1,1,1,1,2,1,0,1,2,1,2,1,2,2,0,1,2,1,2,2,2,1,1,1,2,0,2,1,3,1,0,2,2, %T A366078 2,2,1,2,2,1,1,3,1,2,2,2,1,1,1,2,2,2,1,1,2,1,2,2,1,3,1,2,2,0,2,3,1,2, %U A366078 2,3,1,1,1,2,2,2,2,3,1,1,0,2,1,3,2,2,2 %N A366078 The number of distinct prime factors of the cubefree part of n (A360539). %C A366078 The number of exponents smaller than 3 in the prime factorization of n. %C A366078 The number of prime factors of the cubefree part of n (A360539), counted with multiplicity is A366077(n). %H A366078 Amiram Eldar, <a href="/A366078/b366078.txt">Table of n, a(n) for n = 1..10000</a> %H A366078 Rafael Jakimczuk and Matilde LalĂn, <a href="http://math.colgate.edu/~integers/w113/w113.pdf">Sums of omega(n) and Omega(n) over the k-free parts and k-full parts of some particular sequences</a>, Integers, Vol. 22 (2022), Article #A113. %F A366078 a(n) = A001221(A360539(n)). %F A366078 a(n) = A001221(n) - A295659(n). %F A366078 Additive with a(p^e) = 1 if e <= 2, and a(p^e) = 0 for e >= 3. %F A366078 a(n) >= 0, with equality if and only if n is cubefull (A036966). %F A366078 a(n) <= A001221(n), with equality if and only if n is cubefree (A004709). %F A366078 a(n) <= A366077(n), with equality if and only if n is squarefree (A005117). %F A366078 Sum_{k=1..m} a(k) = n * (log(log(n)) + B - C) + O(n/log(n)), where B is Mertens's constant (A077761) and C = Sum_{p prime} 1/p^3 = 0.174762... (A085541). %t A366078 f[p_, e_] := If[e < 3, 1, 0]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100] %o A366078 (PARI) a(n) = vecsum(apply(x -> if(x < 3, 1, 0), factor(n)[, 2])); %Y A366078 Cf. A001221, A004709, A005117, A036966, A077761, A085541, A295659, A360539, A366077. %K A366078 nonn,easy %O A366078 1,6 %A A366078 _Amiram Eldar_, Sep 28 2023