A366092 Distance from the sum of the first n primes to the nearest prime.
2, 0, 0, 1, 0, 1, 0, 1, 2, 1, 2, 3, 0, 1, 0, 3, 2, 1, 2, 1, 2, 3, 4, 3, 4, 1, 2, 5, 2, 1, 4, 1, 4, 1, 2, 3, 4, 5, 2, 3, 2, 5, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 2, 3, 2, 1, 2, 1, 10, 1, 0, 11, 2, 1, 0, 3, 2, 3, 2, 7, 2, 1, 2, 3, 4, 3, 2, 3, 4, 5, 2, 5, 4, 3, 10, 3
Offset: 0
Examples
a(3) = 1 because the sum of the first 3 primes is 2 + 3 + 5 = 10, the nearest prime is 11 and 11 - 10 = 1.
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
pDist[n_]:=If[PrimeQ[n],0,Min[NextPrime[n]-n,n-NextPrime[n,-1]]]; A366092list[nmax_]:=Map[pDist,Prepend[Accumulate[Prime[Range[nmax]]],0]]; A366092list[100]
-
Python
from sympy import prime, nextprime, prevprime def A366092(n): return min((m:=sum(prime(i) for i in range(1,n+1)))-prevprime(m+1),nextprime(m)-m) if n else 2 # Chai Wah Wu, Oct 03 2023
Comments