This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366106 #21 Oct 08 2023 09:30:19 %S A366106 101,109,149,191,199,401,409,419,449,491,499,911,919,941,991,1049, %T A366106 1181,1259,1361,1481,1499,1601,1609,1619,1699,1811,1949,2549,2591, %U A366106 3691,4049,4259,4481,4649,4909,4919,4999,6449,6491,8101,8111,8191,9049,9161,9181,9491,9649,9811,9949,10009,10091 %N A366106 Primes that are the concatenation of three squares in base 10. %C A366106 The three squares need not be distinct. %C A366106 At least one of the squares must be divisible by 9. %C A366106 The first term that is a concatenation of three squares in two different ways is 14411, the concatenation of 1 = 1^2, 441 = 21^2 and 1 = 1^2 and also 144 = 12^2, 1 = 1^2 and 1 = 1^2. %C A366106 The first term that is a concatenation of three squares in three different ways is 1961441, the concatenation of 196 = 14^2, 144 = 12^2 and 1 = 1^2, of 196, 1 and 441 = 21^2, and of 1, 961 = 31^2 and 441. %H A366106 Robert Israel, <a href="/A366106/b366106.txt">Table of n, a(n) for n = 1..10000</a> %e A366106 a(16) = 1049 is a term because it is the concatenation of 1 = 1^2, 0 = 0^2 and 49 = 7^2. %p A366106 M:= 5: # for terms < 10^M %p A366106 S:= {}: %p A366106 for a from 1 while a^2 < 10^(M-2) do %p A366106 x:= a^2; mx:= length(x); %p A366106 for b from 0 while b^2 < 10^(M-1-mx) do %p A366106 y:= b^2; my:= max(1,length(y)); %p A366106 for c from 0 while c^2 < 10^(M-mx-my) do %p A366106 v:= parse(cat(x,y,c^2)); %p A366106 if isprime(v) then S:= S union {v} fi; %p A366106 od od od: %p A366106 sort(convert(S,list)); %t A366106 a[maxSquareIndex_Integer?Positive]:=Select[Flatten[Table[ToExpression[IntegerString[a^2]<>IntegerString[b^2]<>IntegerString[c^2]],{a,1,maxSquareIndex},{b,0,maxSquareIndex},{c,0,maxSquareIndex}]],PrimeQ]//Sort;a[10][[1;;51]] (* _Robert P. P. McKone_, Oct 02 2023 *) %Y A366106 Cf. A167535. %K A366106 nonn,base %O A366106 1,1 %A A366106 _Robert Israel_, Sep 29 2023