This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366107 #18 Oct 03 2023 10:01:00 %S A366107 1,1,2,3,6,11,21,39,75,141,273,519,1009,1933,3770,7263,14202,27479, %T A366107 53846,104543,205216,399543,785460,1532779,3017106,5899167,11624580, %U A366107 22766607,44905518,88073091,173863965,341425551,674506059,1326019653,2621371005,5158412943,10203609597 %N A366107 a(n) = Sum_{i=0..floor(q(n)/3)} binomial(n-3*(i+1), q(n)-3*i) with q(n) = ceiling((n-3)/2). %H A366107 Gábor Czédli, <a href="https://arxiv.org/abs/2309.13783">Minimum-sized generating sets of the direct powers of the free distributive lattice on three generators and a Sperner theorem</a>, arXiv:2309.13783 [math.CO], 2023. See formulas (3.5) at p. 4 and (4.15) at p. 8. %F A366107 From Remark 3.4 at p. 5 in Czédli: (Start) %F A366107 A366108(n)/a(n) ~ 7/4. %F A366107 A366109(n)/a(n) ~ 7/6. (End) %F A366107 a(n) ~ c*2^(n+1)/sqrt(n), with c = 1/(7*sqrt(2*Pi)) = (2/7)* A218708. %t A366107 q[n_]:=Ceiling[(n-3)/2]; a[n_]:=Sum[Binomial[n-3(i+1),q[n]-3i], {i,0,Floor[q[n]/3]}]; Array[a,37,3] %o A366107 (PARI) a(n) = my(q=ceil((n-3)/2)); sum(i=0, q\3, binomial(n-3*(i+1), q-3*i)); \\ _Michel Marcus_, Sep 30 2023 %Y A366107 Cf. A004526, A218708, A366108, A366109. %K A366107 nonn %O A366107 3,3 %A A366107 _Stefano Spezia_, Sep 29 2023