cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366112 Expansion of (1/x) * Series_Reversion( x*(1-x-x^5)/(1-x) ).

This page as a plain text file.
%I A366112 #21 Aug 21 2025 05:54:44
%S A366112 1,0,0,0,0,1,1,1,1,1,7,14,22,31,41,103,235,457,791,1261,2399,5015,
%T A366112 10257,19676,35296,65170,127520,256187,507601,969495,1834433,3534477,
%U A366112 6962249,13809538,27061252,52439361,101701035,199152071,393332277,776589611,1525416837
%N A366112 Expansion of (1/x) * Series_Reversion( x*(1-x-x^5)/(1-x) ).
%H A366112 Seiichi Manyama, <a href="/A366112/b366112.txt">Table of n, a(n) for n = 0..1000</a>
%H A366112 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A366112 a(n) = (1/(n+1)) * Sum_{k=0..floor(n/5)} binomial(n+k,k) * binomial(n-4*k-1,n-5*k).
%t A366112 CoefficientList[InverseSeries[Series[x*(1-x-x^5)/(1-x),{x,0,41}]]/x,x] (* _Stefano Spezia_, Aug 21 2025 *)
%o A366112 (PARI) a(n) = sum(k=0, n\5, binomial(n+k, k)*binomial(n-4*k-1, n-5*k))/(n+1);
%Y A366112 Cf. A046736, A054514, A215342.
%Y A366112 Cf. A017899.
%K A366112 nonn
%O A366112 0,11
%A A366112 _Seiichi Manyama_, Sep 29 2023