This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366126 #7 Sep 30 2023 21:57:37 %S A366126 1,1,1,1,1,1,1,8,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,8,1,1,27,1,1,1,1,1,1,1, %T A366126 1,1,1,1,1,8,1,1,1,1,1,1,1,1,1,1,1,1,1,27,1,8,1,1,1,1,1,1,1,64,1,1,1, %U A366126 1,1,1,1,8,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A366126 The largest unitary divisor of n that is a cube. %C A366126 First differs from A056191 at n = 32. %H A366126 Amiram Eldar, <a href="/A366126/b366126.txt">Table of n, a(n) for n = 1..10000</a> %F A366126 Multiplicative with a(p^e) = p^e if e is divisible by 3 and 1 otherwise. %F A366126 a(n) = n if and only if n is a positive cube (A000578 \ {0}). %F A366126 A001221(a(n)) = A366124(n). %F A366126 A001222(a(n)) = A366125(n). %F A366126 Sum_{k=1..n} a(k) ~ c * n^(4/3), where c = (1/4) * Product_{p prime} (1 + (p^(1/3) + p^(5/3))/(1 + p + p^2 + p^3)) = 0.61488587249270755696... . %t A366126 f[p_, e_] := If[Divisible[e, 3], p^e, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A366126 (PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2] % 3, 1, f[i,1]^f[i,2]));} %Y A366126 Cf. A001221, A001222, A000578, A056191, A350388, A366124, A366125. %K A366126 nonn,easy,mult %O A366126 1,8 %A A366126 _Amiram Eldar_, Sep 30 2023