cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366127 Number of finite incomplete multisets of positive integers with greatest non-subset-sum n.

This page as a plain text file.
%I A366127 #6 Oct 05 2023 21:30:50
%S A366127 1,2,4,6,11,15,25,35,53,72,108
%N A366127 Number of finite incomplete multisets of positive integers with greatest non-subset-sum n.
%C A366127 A non-subset-sum of a multiset of positive integers summing to n is an element of {1..n} that is not the sum of any submultiset. A multiset is incomplete if it has at least one non-subset-sum.
%e A366127 The non-subset-sums of y = {2,2,3} are {1,6}, with maximum 6, so y is counted under a(6).
%e A366127 The a(1) = 1 through a(6) = 15 multisets:
%e A366127   {2}  {3}    {4}      {5}        {6}          {7}
%e A366127        {1,3}  {1,4}    {1,5}      {1,6}        {1,7}
%e A366127               {2,2}    {2,3}      {2,4}        {2,5}
%e A366127               {1,1,4}  {1,1,5}    {3,3}        {3,4}
%e A366127                        {1,2,5}    {1,1,6}      {1,1,7}
%e A366127                        {1,1,1,5}  {1,2,6}      {1,2,7}
%e A366127                                   {1,3,3}      {1,3,4}
%e A366127                                   {2,2,2}      {2,2,3}
%e A366127                                   {1,1,1,6}    {1,1,1,7}
%e A366127                                   {1,1,2,6}    {1,1,2,7}
%e A366127                                   {1,1,1,1,6}  {1,1,3,7}
%e A366127                                                {1,2,2,7}
%e A366127                                                {1,1,1,1,7}
%e A366127                                                {1,1,1,2,7}
%e A366127                                                {1,1,1,1,1,7}
%t A366127 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
%t A366127 nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]];
%t A366127 Table[Length[Select[Join@@IntegerPartitions/@Range[n,2*n],Max@@nmz[#]==n&]],{n,5}]
%Y A366127 For least instead of greatest we have A126796, ranks A325781, strict A188431.
%Y A366127 These multisets have ranks A365830.
%Y A366127 Counts appearances of n in the rank statistic A365920.
%Y A366127 Column sums of A365921.
%Y A366127 These multisets counted by sum are A365924, strict A365831.
%Y A366127 The strict case is A366129.
%Y A366127 A000041 counts integer partitions, strict A000009.
%Y A366127 A046663 counts partitions without a submultiset summing k, strict A365663.
%Y A366127 A325799 counts non-subset-sums of prime indices.
%Y A366127 A364350 counts combination-free strict partitions, complement A364839.
%Y A366127 A365543 counts partitions with a submultiset summing to k.
%Y A366127 A365661 counts strict partitions w/ a subset summing to k.
%Y A366127 A365918 counts non-subset-sums of partitions.
%Y A366127 A365923 counts partitions by non-subset sums, strict A365545.
%Y A366127 Cf. A006827, A276024, A284640, A304792, A365658, A365919, A365925.
%K A366127 nonn,more
%O A366127 1,2
%A A366127 _Gus Wiseman_, Sep 30 2023