This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366127 #6 Oct 05 2023 21:30:50 %S A366127 1,2,4,6,11,15,25,35,53,72,108 %N A366127 Number of finite incomplete multisets of positive integers with greatest non-subset-sum n. %C A366127 A non-subset-sum of a multiset of positive integers summing to n is an element of {1..n} that is not the sum of any submultiset. A multiset is incomplete if it has at least one non-subset-sum. %e A366127 The non-subset-sums of y = {2,2,3} are {1,6}, with maximum 6, so y is counted under a(6). %e A366127 The a(1) = 1 through a(6) = 15 multisets: %e A366127 {2} {3} {4} {5} {6} {7} %e A366127 {1,3} {1,4} {1,5} {1,6} {1,7} %e A366127 {2,2} {2,3} {2,4} {2,5} %e A366127 {1,1,4} {1,1,5} {3,3} {3,4} %e A366127 {1,2,5} {1,1,6} {1,1,7} %e A366127 {1,1,1,5} {1,2,6} {1,2,7} %e A366127 {1,3,3} {1,3,4} %e A366127 {2,2,2} {2,2,3} %e A366127 {1,1,1,6} {1,1,1,7} %e A366127 {1,1,2,6} {1,1,2,7} %e A366127 {1,1,1,1,6} {1,1,3,7} %e A366127 {1,2,2,7} %e A366127 {1,1,1,1,7} %e A366127 {1,1,1,2,7} %e A366127 {1,1,1,1,1,7} %t A366127 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A366127 nmz[y_]:=Complement[Range[Total[y]],Total/@Subsets[y]]; %t A366127 Table[Length[Select[Join@@IntegerPartitions/@Range[n,2*n],Max@@nmz[#]==n&]],{n,5}] %Y A366127 For least instead of greatest we have A126796, ranks A325781, strict A188431. %Y A366127 These multisets have ranks A365830. %Y A366127 Counts appearances of n in the rank statistic A365920. %Y A366127 Column sums of A365921. %Y A366127 These multisets counted by sum are A365924, strict A365831. %Y A366127 The strict case is A366129. %Y A366127 A000041 counts integer partitions, strict A000009. %Y A366127 A046663 counts partitions without a submultiset summing k, strict A365663. %Y A366127 A325799 counts non-subset-sums of prime indices. %Y A366127 A364350 counts combination-free strict partitions, complement A364839. %Y A366127 A365543 counts partitions with a submultiset summing to k. %Y A366127 A365661 counts strict partitions w/ a subset summing to k. %Y A366127 A365918 counts non-subset-sums of partitions. %Y A366127 A365923 counts partitions by non-subset sums, strict A365545. %Y A366127 Cf. A006827, A276024, A284640, A304792, A365658, A365919, A365925. %K A366127 nonn,more %O A366127 1,2 %A A366127 _Gus Wiseman_, Sep 30 2023