cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366129 Number of finite sets of positive integers with greatest non-subset-sum n.

This page as a plain text file.
%I A366129 #17 Nov 13 2024 17:57:32
%S A366129 1,2,2,4,4,6,7,11,11,15,18,23,28,36,40,50,59,70,83,101,118,141,166,
%T A366129 195,227,268,306,358,414,478,549,640,730,846,968,1113,1271,1462,1657,
%U A366129 1897,2154,2451
%N A366129 Number of finite sets of positive integers with greatest non-subset-sum n.
%C A366129 A non-subset-sum of a set summing to n is a positive integer up to n that is not the sum of any subset. For example, the non-subset-sums of {1,3,4} are {2,6}.
%e A366129 The a(1) = 1 through a(8) = 11 sets:
%e A366129   {2}  {3}    {4}    {5}      {6}      {7}      {8}        {9}
%e A366129        {1,3}  {1,4}  {2,3}    {2,4}    {2,5}    {2,6}      {2,7}
%e A366129                      {1,5}    {1,6}    {3,4}    {3,5}      {3,6}
%e A366129                      {1,2,5}  {1,2,6}  {1,7}    {1,8}      {4,5}
%e A366129                                        {1,3,4}  {1,3,5}    {2,3,4}
%e A366129                                        {1,2,7}  {1,2,8}    {1,9}
%e A366129                                                 {1,2,3,8}  {1,3,6}
%e A366129                                                            {1,4,5}
%e A366129                                                            {1,2,9}
%e A366129                                                            {1,2,3,9}
%e A366129                                                            {1,2,4,9}
%t A366129 nmz[y_]:=Complement[Range[Total[y]], Total/@Subsets[y]];
%t A366129 Table[Length[Select[Join@@IntegerPartitions/@Range[n,2*n], UnsameQ@@#&&Max@@nmz[#]==n&]],{n,15}]
%Y A366129 For least instead of greatest: A188431, non-strict A126796 (ranks A325781).
%Y A366129 The version counting multisets instead of sets is A366127.
%Y A366129 These sets counted by sum are A365924, strict A365831.
%Y A366129 A046663 counts partitions without a submultiset summing k, strict A365663.
%Y A366129 A325799 counts non-subset-sums of prime indices.
%Y A366129 A365923 counts partitions by number of non-subset-sums, strict A365545.
%Y A366129 Cf. A006827, A276024, A284640, A304792, A365543, A365658, A365661, A365918, A365920, A365921, A365925.
%K A366129 nonn,more
%O A366129 1,2
%A A366129 _Gus Wiseman_, Oct 07 2023
%E A366129 a(31)-a(42) from _Erich Friedman_, Nov 13 2024