A366130 Number of subsets of {1..n} with a subset summing to n + 1.
0, 0, 1, 2, 7, 15, 38, 79, 184, 378, 823, 1682, 3552, 7208, 14948, 30154, 61698, 124302, 252125, 506521, 1022768, 2051555, 4127633, 8272147, 16607469, 33258510, 66680774, 133467385, 267349211, 535007304, 1071020315, 2142778192, 4288207796
Offset: 0
Examples
The subset S = {1,2,4} has subset {1,4} with sum 4+1 and {2,4} with sum 5+1 and {1,2,4} with sum 6+1, so S is counted under a(4), a(5), and a(6). The a(0) = 0 through a(5) = 15 subsets: . . {1,2} {1,3} {1,4} {1,5} {1,2,3} {2,3} {2,4} {1,2,3} {1,2,3} {1,2,4} {1,2,4} {1,3,4} {1,2,5} {2,3,4} {1,3,5} {1,2,3,4} {1,4,5} {2,3,4} {2,4,5} {1,2,3,4} {1,2,3,5} {1,2,4,5} {1,3,4,5} {2,3,4,5} {1,2,3,4,5}
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#],n+1]&]],{n,0,10}]
-
Python
from itertools import combinations from sympy.utilities.iterables import partitions def A366130(n): a = tuple(set(p.keys()) for p in partitions(n+1,k=n) if max(p.values(),default=0)==1) return sum(1 for k in range(2,n+1) for w in (set(d) for d in combinations(range(1,n+1),k)) if any(s<=w for s in a)) # Chai Wah Wu, Nov 24 2023
Formula
Diagonal k = n + 1 of A365381.
Extensions
a(20)-a(32) from Chai Wah Wu, Nov 24 2023