cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366132 Number of unordered pairs of distinct strict integer partitions of n.

This page as a plain text file.
%I A366132 #7 Oct 08 2023 23:32:00
%S A366132 0,0,0,1,1,3,6,10,15,28,45,66,105,153,231,351,496,703,1035,1431,2016,
%T A366132 2850,3916,5356,7381,10011,13530,18336,24531,32640,43660,57630,75855,
%U A366132 100128,130816,170820,222778,288420,372816,481671,618828,793170,1016025,1295245
%N A366132 Number of unordered pairs of distinct strict integer partitions of n.
%F A366132 a(n) = binomial(A000009(n),2).
%e A366132 The a(3) = 1 through a(8) = 15 pairs of strict partitions:
%e A366132   {3,21}  {4,31}  {5,32}   {6,42}    {7,43}    {8,53}
%e A366132                   {5,41}   {6,51}    {7,52}    {8,62}
%e A366132                   {41,32}  {51,42}   {7,61}    {8,71}
%e A366132                            {6,321}   {52,43}   {62,53}
%e A366132                            {42,321}  {61,43}   {71,53}
%e A366132                            {51,321}  {61,52}   {71,62}
%e A366132                                      {7,421}   {8,431}
%e A366132                                      {43,421}  {8,521}
%e A366132                                      {52,421}  {53,431}
%e A366132                                      {61,421}  {53,521}
%e A366132                                                {62,431}
%e A366132                                                {62,521}
%e A366132                                                {71,431}
%e A366132                                                {71,521}
%e A366132                                                {521,431}
%t A366132 Table[Length[Subsets[Select[IntegerPartitions[n],UnsameQ@@#&],{2}]],{n,0,30}]
%Y A366132 For subsets instead of partitions we have A006516, non-disjoint A003462.
%Y A366132 The disjoint case is A108796, non-strict A260669.
%Y A366132 For non-strict partitions we have A355389.
%Y A366132 The ordered disjoint case is A365662, non-strict A054440.
%Y A366132 The ordered version is 2*a(n).
%Y A366132 Including equal pairs or twins gives A366317, ordered A304990.
%Y A366132 A000041 counts integer partitions, strict A000009.
%Y A366132 A002219 and A237258 count partitions of 2n including a partition of n.
%Y A366132 A161680 and A000217 count 2-subsets of {1..n}.
%Y A366132 Cf. A000124, A001255, A006827, A032302, A064914, A365661, A365663.
%K A366132 nonn
%O A366132 0,6
%A A366132 _Gus Wiseman_, Oct 08 2023