This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366132 #7 Oct 08 2023 23:32:00 %S A366132 0,0,0,1,1,3,6,10,15,28,45,66,105,153,231,351,496,703,1035,1431,2016, %T A366132 2850,3916,5356,7381,10011,13530,18336,24531,32640,43660,57630,75855, %U A366132 100128,130816,170820,222778,288420,372816,481671,618828,793170,1016025,1295245 %N A366132 Number of unordered pairs of distinct strict integer partitions of n. %F A366132 a(n) = binomial(A000009(n),2). %e A366132 The a(3) = 1 through a(8) = 15 pairs of strict partitions: %e A366132 {3,21} {4,31} {5,32} {6,42} {7,43} {8,53} %e A366132 {5,41} {6,51} {7,52} {8,62} %e A366132 {41,32} {51,42} {7,61} {8,71} %e A366132 {6,321} {52,43} {62,53} %e A366132 {42,321} {61,43} {71,53} %e A366132 {51,321} {61,52} {71,62} %e A366132 {7,421} {8,431} %e A366132 {43,421} {8,521} %e A366132 {52,421} {53,431} %e A366132 {61,421} {53,521} %e A366132 {62,431} %e A366132 {62,521} %e A366132 {71,431} %e A366132 {71,521} %e A366132 {521,431} %t A366132 Table[Length[Subsets[Select[IntegerPartitions[n],UnsameQ@@#&],{2}]],{n,0,30}] %Y A366132 For subsets instead of partitions we have A006516, non-disjoint A003462. %Y A366132 The disjoint case is A108796, non-strict A260669. %Y A366132 For non-strict partitions we have A355389. %Y A366132 The ordered disjoint case is A365662, non-strict A054440. %Y A366132 The ordered version is 2*a(n). %Y A366132 Including equal pairs or twins gives A366317, ordered A304990. %Y A366132 A000041 counts integer partitions, strict A000009. %Y A366132 A002219 and A237258 count partitions of 2n including a partition of n. %Y A366132 A161680 and A000217 count 2-subsets of {1..n}. %Y A366132 Cf. A000124, A001255, A006827, A032302, A064914, A365661, A365663. %K A366132 nonn %O A366132 0,6 %A A366132 _Gus Wiseman_, Oct 08 2023