This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366133 #15 Jan 05 2025 19:51:42 %S A366133 1,1,1,3,2,1,8,9,3,1,50,32,18,4,1,214,250,80,30,5,1,2086,1284,750,160, %T A366133 45,6,1,11976,14602,4494,1750,280,63,7,1,162816,95808,58408,11984, %U A366133 3500,448,84,8,1,1143576,1465344,431136,175224,26964,6300,672,108,9,1,20472504,11435760,7326720,1437120,438060,53928,10500,960,135,10,1 %N A366133 Triangle read by rows: coefficients in expansion of another Asveld's polynomials Pi_j(x). %C A366133 First negative term is T(35,0) = -230450728485788167742674544892530875760640. %C A366133 Conjectures: For 0 < k < p and p prime, T(p,k) == 0 (mod p). %C A366133 For 0 < k < n (k odd) and n = 2^m (m natural number), T(n,k) == 0 (mod n). %H A366133 P. R. J. Asveld, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/27-4/asveld.pdf">Fibonacci-like differential equations with a polynomial nonhomogeneous part</a>, Fib. Quart. 27 (1989), 303-309. See Table 2 p. 308. %F A366133 T(n,k) = binomial(n,k)*A005444(n-k). %F A366133 Sum_{k=1..n} (-1)^(k-1)*(k-1)!*T(n, k) = A005445(n). %F A366133 E.g.f. of column k: x^k / ((1-log(1+x)-log(1+x)^2)*k!), k >= 0. %F A366133 Recurrence: T(n,0) = A005444(n) and T(n,k) = n*T(n-1,k-1) / k, n >= k >= 1. %F A366133 T(n,k) = Sum_{j=k..n} Stirling2(j,k)*(Sum_{i=j..n} Stirling1(n,i)*A039948(i,j)). %e A366133 Triangle begins: %e A366133 1, %e A366133 1, 1, %e A366133 3, 2, 1, %e A366133 8, 9, 3, 1, %e A366133 50, 32, 18, 4, 1, %e A366133 214, 250, 80, 30, 5, 1, %e A366133 2086, 1284, 750, 160, 45, 6, 1, %e A366133 11976, 14602, 4494, 1750, 280, 63, 7, 1, %e A366133 ... %p A366133 T := (n, k) -> binomial(n,k)*add(j!*combinat[fibonacci](j+1)*Stirling1(n-k,j), j=0 .. n-k): seq(print(seq(T(n, k), k = 0 .. n)), n=0 .. 9); %p A366133 # second Maple program: %p A366133 T := (n, k) -> add(Stirling2(j, k)/j!*add(i!*combinat[fibonacci](i-j+1)*Stirling1(n, i), i = j .. n), j = k .. n): seq(print(seq(T(n, k), k = 0 .. n)), n = 0 .. 9); %Y A366133 Cf. A000045, A005444 (col 0), A005445, A039948, A048994, A305923 (row sums). %K A366133 sign,tabl %O A366133 0,4 %A A366133 _Mélika Tebni_, Sep 30 2023