A366136 Minimal number of factorials or their negatives that add to n.
0, 1, 1, 2, 2, 2, 1, 2, 2, 3, 3, 3, 2, 3, 3, 4, 3, 3, 2, 3, 3, 3, 2, 2, 1, 2, 2, 3, 3, 3, 2, 3, 3, 4, 4, 4, 3, 4, 4, 5, 4, 4, 3, 4, 4, 4, 3, 3, 2, 3, 3, 4, 4, 4, 3, 4, 4, 5, 5, 5, 4, 5, 5, 6, 5, 5, 4, 5, 5, 5, 4, 4, 3, 4, 4, 5, 5, 5, 4, 5, 5, 6, 5, 5, 4, 5, 5
Offset: 0
Examples
11 = 6 + 6 - 1 (three factorials), so a(11) = 3. 15 = 6 + 6 + 2 + 1 or 15 = 24 - 6 - 2 - 1 (four factorials), so a(15) = 4.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
seq[m_] := Module[{s = Table[m!, {m!}], d, b, sum}, Do[d = PadLeft[Most@ IntegerDigits[k, MixedRadix[Range[m, 1, -1]]], m]; Do[b = 2*PadLeft[ IntegerDigits[i, 2], m] - 1; sum = Total[b * d * Range[m, 1, -1]!]; If[0 < sum <= m!, s[[sum]] = Min[s[[sum]], Total[d]]], {i, 1, 2^m - 1}], {k, 1, 2*m!}]; Join[{0}, s]]; seq[5] (* Amiram Eldar, Oct 03 2023 *)