This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366138 #5 Oct 01 2023 07:31:54 %S A366138 1,1,1,1,6,6,1,18,96,96,1,40,576,2976,2976,1,75,2226,29688,151416, %T A366138 151416,1,126,6636,175680,2259576,11449296,11449296,1,196,16632, %U A366138 757800,18931176,238623408,1204566336,1204566336 %N A366138 Triangle read by rows. T(n, k) = A000326(n - k + 1) * T(n, k - 1) + T(n - 1, k) for 0 < k < n. T(n, 0) = 1 and T(n, n) = T(n, n - 1) if n > 0. %C A366138 This a weighted generalized Catalan triangle (A365673) with the pentagonal numbers as weights. %e A366138 Triangle T(n, k) starts: %e A366138 [0] 1; %e A366138 [1] 1, 1; %e A366138 [2] 1, 6, 6; %e A366138 [3] 1, 18, 96, 96; %e A366138 [4] 1, 40, 576, 2976, 2976; %e A366138 [5] 1, 75, 2226, 29688, 151416, 151416; %e A366138 [6] 1, 126, 6636, 175680, 2259576, 11449296, 11449296; %e A366138 [7] 1, 196, 16632, 757800, 18931176, 238623408, 1204566336, 1204566336; %p A366138 T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1) %p A366138 else (((n - k + 1)*(3*n - 3*k + 2))/2) * T(n, k - 1) + T(n - 1, k) fi fi end: %p A366138 seq(seq(T(n, k), k = 0..n), n = 0..8); %Y A366138 Cf. A000326, A126151 (main diagonal), A365673. %K A366138 nonn,tabl %O A366138 0,5 %A A366138 _Peter Luschny_, Oct 01 2023