This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366146 #9 Oct 02 2023 01:44:26 %S A366146 1,1,1,1,1,1,1,15,1,1,1,1,1,1,1,31,1,1,1,1,1,1,1,15,1,1,40,1,1,1,1,63, %T A366146 1,1,1,1,1,1,1,15,1,1,1,1,1,1,1,31,1,1,1,1,1,40,1,15,1,1,1,1,1,1,1, %U A366146 127,1,1,1,1,1,1,1,15,1,1,1,1,1,1,1,31,121,1 %N A366146 The sum of divisors of the largest divisor of n that is a cubefull number (A036966). %H A366146 Amiram Eldar, <a href="/A366146/b366146.txt">Table of n, a(n) for n = 1..10000</a> %F A366146 a(n) = A000203(A360540(n)). %F A366146 a(n) = A000203(n)/A366148(n). %F A366146 a(n) >= 1, with equality if and only if n is cubefree (A004709). %F A366146 a(n) <= A000203(n), with equality if and only if n is cubefull (A036966). %F A366146 Multiplicative with a(p^e) = 1 if e <= 2 and (p^(e+1)-1)/(p-1) otherwise. %F A366146 Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^(3*s-3) + 1/p^(3*s-2) + 1/p^(3*s-1) - 1/p^(4*s-3) - 1/p^(4*s-2)). %t A366146 f[p_, e_] := If[e < 3, 1, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A366146 (PARI) a(n) = {my(f = factor(n), p = f[, 1], e = f[, 2]); prod(i = 1, #p, if(e[i] < 3, 1, (p[i]^(e[i]+1)-1)/(p[i]-1)))}; %Y A366146 Cf. A000203, A036966, A295294, A360540, A366076, A366145, A366148. %K A366146 nonn,easy,mult %O A366146 1,8 %A A366146 _Amiram Eldar_, Oct 01 2023