cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366147 The number of divisors of the cubefree part of n (A360539).

This page as a plain text file.
%I A366147 #10 Oct 02 2023 01:44:12
%S A366147 1,2,2,3,2,4,2,1,3,4,2,6,2,4,4,1,2,6,2,6,4,4,2,2,3,4,1,6,2,8,2,1,4,4,
%T A366147 4,9,2,4,4,2,2,8,2,6,6,4,2,2,3,6,4,6,2,2,4,2,4,4,2,12,2,4,6,1,4,8,2,6,
%U A366147 4,8,2,3,2,4,6,6,4,8,2,2,1,4,2,12,4,4,4
%N A366147 The number of divisors of the cubefree part of n (A360539).
%H A366147 Amiram Eldar, <a href="/A366147/b366147.txt">Table of n, a(n) for n = 1..10000</a>
%F A366147 a(n) = A000005(A360539(n)).
%F A366147 a(n) = A000005(n)/A366145(n).
%F A366147 Multiplicative with a(p^e) = e+1 if e <= 2, and 1 otherwise.
%F A366147 a(n) >= 1, with equality if and only if n is cubefull (A036966).
%F A366147 a(n) <= A000005(n), with equality if and only if n is cubefree (A004709).
%F A366147 Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^s + 1/p^(2*s) - 2/p^(3*s)).
%F A366147 From _Vaclav Kotesovec_, Oct 01 2023: (Start)
%F A366147 Dirichlet g.f.: zeta(s)^2 * Product_{p prime} (1 - 3/p^(3*s) + 2/p^(4*s)).
%F A366147 Let f(s) = Product_{p prime} (1 - 3/p^(3*s) + 2/p^(4*s)).
%F A366147 Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 2*gamma - 1 + f'(1)/f(1)), where
%F A366147 f(1) = Product_{p prime} (1 - 3/p^3 + 2/p^4) = 0.66219033176371496870504912254207846719824904470940603905284774924086...,
%F A366147 f'(1) = f(1) * Sum_{p prime} (9*p - 8) * log(p) / (p^4 - 3*p + 2) = f(1) * 1.04316863044761953555286128194165251303791613504188623828521117799260...
%F A366147 and gamma is the Euler-Mascheroni constant A001620. (End)
%t A366147 f[p_, e_] := If[e < 3, e+1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
%o A366147 (PARI) a(n) = vecprod(apply(x -> if(x < 3, x+1, 1), factor(n)[, 2]));
%Y A366147 Cf. A000005, A004709, A036966, A056671, A360539, A366077, A366078, A366145, A366148.
%K A366147 nonn,easy,mult
%O A366147 1,2
%A A366147 _Amiram Eldar_, Oct 01 2023