cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366149 Triangle read by rows. T(n, k) = A000566(n - k + 1) * T(n, k - 1) + T(n - 1, k) for 0 < k < n. T(n, 0) = 1 and T(n, n) = T(n, n - 1) if n > 0.

Original entry on oeis.org

1, 1, 1, 1, 8, 8, 1, 26, 190, 190, 1, 60, 1270, 9080, 9080, 1, 115, 5180, 102320, 725320, 725320, 1, 196, 15960, 644960, 12334600, 87067520, 87067520, 1, 308, 40908, 2894900, 110761200, 2080769120, 14652451360, 14652451360
Offset: 0

Views

Author

Peter Luschny, Oct 01 2023

Keywords

Comments

This a weighted generalized Catalan triangle (A365673) with the heptagonal numbers as weights.

Examples

			Triangle T(n, k) starts:
[0] 1;
[1] 1,   1;
[2] 1,   8,     8;
[3] 1,  26,   190,     190;
[4] 1,  60,  1270,    9080,      9080;
[5] 1, 115,  5180,  102320,    725320,     725320;
[6] 1, 196, 15960,  644960,  12334600,   87067520,    87067520;
[7] 1, 308, 40908, 2894900, 110761200, 2080769120, 14652451360, 14652451360;
		

Crossrefs

Cf. A000566, A366150 (main diagonal), A365673 (general case).

Programs

  • Maple
    T := proc(n, k) option remember;
    if k = 0 then 1 else if k = n then T(n, k-1) else
    (((5*k - 5*n - 2)*(k - n - 1))/2) * T(n, k - 1) + T(n - 1, k) fi fi end:
    seq(seq(T(n, k), k = 0..n), n = 0..8);
  • Mathematica
    A366149[n_, k_] := A366149[n, k] = Which[k==0, 1, k==n, A366149[n, k-1], True, PolygonalNumber[7, n-k+1] A366149[n, k-1] + A366149[n-1, k]];
    Table[A366149[n, k], {n,0,10}, {k,0,n}] (* Paolo Xausa, Jan 01 2024 *)