A366156 Triangular array read by rows: T(n,k) = number of pairs u,v of partitions of n such that d(u,v) = 2k, where d is the distance function defined in Comments.
1, 2, 1, 5, 4, 1, 9, 7, 4, 1, 17, 20, 11, 6, 1, 28, 35, 22, 13, 6, 1, 47, 70, 53, 35, 17, 8, 1, 73, 119, 104, 68, 41, 21, 8, 1, 114, 211, 197, 158, 87, 58, 25, 10, 1, 170, 337, 349, 282, 185, 111, 66, 29, 10, 1, 253, 555, 626, 560, 385, 267, 143, 89, 35, 12, 1
Offset: 2
Examples
Write the 5 partitions of 4 as 4, 31, 22, 211, 111, and represent them as a,b,c,d,e in the following tableaux: a : 4 0 0 0 | 2 4 4 6 b : 3 1 0 0 | 2 2 4 c : 2 2 0 0 | 2 4 d : 2 1 1 0 | 2 e : 1 1 1 1 where, for example, the distances 2 4 4 6 are given by d(a,b) = |4-3| + |0-1| + |0-0| + |0-0| = 2 d(a,c) = |4-2| + |0-2| + |0-0| + |0-0| = 4 d(a,d) = |4-2| + |0-1| + |0-1| + |0-0| = 4 d(a,e) = |4-1| + |0-1| + |0-1| + |0-1| = 6 First eight rows: 1 2 1 5 4 1 9 7 4 1 17 20 11 6 1 28 35 22 13 6 1 47 70 53 35 17 8 1 73 119 104 68 41 21 8 1 ...
Programs
-
Mathematica
c[n_] := PartitionsP[n]; q[n_, k_] := q[n, k] = IntegerPartitions[n][[k]]; r[n_, k_] := r[n, k] = Join[q[n, k], ConstantArray[0, n - Length[q[n, k]]]]; d[u_, v_] := Total[Abs[u - v]]; t[n_] := Flatten[Table[d[r[n, j], r[n, k]], {j, 1, -1 + c[n]}, {k, j + 1, c[n]}]]; t1 = Table[Count[t[n], m], {n, 2, 17}, {m, 2, 2 n - 2, 2}] TableForm[t1] (* this sequence as an array *) u = Flatten[t1] (* this sequence *)
Comments