cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366160 Numbers whose binary expansion is not quasiperiodic.

This page as a plain text file.
%I A366160 #48 Oct 09 2023 12:07:25
%S A366160 1,2,4,5,6,8,9,11,12,13,14,16,17,18,19,20,22,23,24,25,26,27,28,29,30,
%T A366160 32,33,34,35,37,38,39,40,41,43,44,46,47,48,49,50,51,52,53,55,56,57,58,
%U A366160 59,60,61,62,64,65,66,67,68,69,70,71,72,74,75,76,77,78,79
%N A366160 Numbers whose binary expansion is not quasiperiodic.
%C A366160 See A320441 for the definition of quasiperiodic.
%C A366160 All numbers 2^k + 1 >= 5 are terms (A000051).
%C A366160 All powers of 2 are terms (A000079).
%o A366160 (Python)
%o A366160 A000225 = lambda n: (1 << n) - 1
%o A366160 def isA320441(k):
%o A366160   # Code after _Michael S. Branicky_, Mar 24 2022 in A320434.
%o A366160   tt, l = 1, k.bit_length()
%o A366160   for x in range(0, l + 1):
%o A366160     m = A000225(x)
%o A366160     t = k & m
%o A366160     if (t != tt):
%o A366160       if (t == k): return False
%o A366160       r = k
%o A366160       for g in range(0, x):
%o A366160         r >>= 1
%o A366160         if (r & m == t) and (r == t): return True
%o A366160       tt = t
%o A366160 print([n for n in range(1,80) if not isA320441(n)])
%Y A366160 Cf. A000051, A000079, A000225, A320441 (complement).
%K A366160 nonn,base
%O A366160 1,2
%A A366160 _DarĂ­o Clavijo_, Oct 02 2023