cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366167 Semiprimes that are the sum of two successive terms of A092192.

This page as a plain text file.
%I A366167 #17 Oct 09 2023 11:05:35
%S A366167 25,146,201,221,249,302,365,529,662,681,849,949,1211,1282,1318,1343,
%T A366167 1849,2517,3223,3398,3466,3635,3867,3949,4063,4749,4819,4997,5158,
%U A366167 6049,6614,7023,7041,7066,7117,7921,8314,8471,8709,8727,8914,8981,9155,9235,9299,9563,10741,10895,10958,11435,11962
%N A366167 Semiprimes that are the sum of two successive terms of A092192.
%H A366167 Robert Israel, <a href="/A366167/b366167.txt">Table of n, a(n) for n = 1..10000</a>
%e A366167 a(3) = 201 is a term because 201 = 95 + 106 = A092192(7) + A092192(8).
%p A366167 SP:= select(t -> numtheory:-bigomega(t) = 2, [$1..10000]):
%p A366167 A092192:= select(t -> numtheory:-bigomega(t) = 2, SP[2..-1]+SP[1..-2]):
%p A366167 select(t -> numtheory:-bigomega(t) = 2, A092192[2..-1]+A092192[1..-2]);
%t A366167 sim = Select[Range[4, 100000], 2 == PrimeOmega[#];&]; se = Select[Drop[sim, 1]
%t A366167 + Drop[sim, -1], 2 == PrimeOmega[#] &];    Select[Drop[se, 1] + Drop[se, -1], 2
%t A366167 == PrimeOmega[#] &]
%o A366167 (PARI) upto(n) = {my(pr = 10, res = List(), semiprimes = List([4,6])); forfactored(i = 9, n, if(bigomega(i[2]) == 2, listpop(semiprimes, 1); listput(semiprimes, i[1]); s = semiprimes[1] + semiprimes[2]; if(bigomega(s) == 2, c = s + pr; if(c > n, return(res)); if(bigomega(c) == 2, listput(res, c)); pr = s))); res} \\ _David A. Corneth_, Oct 02 2023
%Y A366167 Cf. A001358, A092192.
%K A366167 nonn
%O A366167 1,1
%A A366167 _Zak Seidov_ and _Robert Israel_, Oct 02 2023