This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366172 #28 Sep 20 2024 02:17:55 %S A366172 156,352,6832,60976,91648,152812,260865,2834572,3335968,3532096, %T A366172 4077388,5044725,5725504,6112576,8102656,10557148,19762876,39411712, %U A366172 50718016,66965104,111372508,232774912,483879808,2045453824,6849461025,7904670976,8521265152,11818720108,13112466688,13714642432 %N A366172 Strongly 2-near perfect numbers. %C A366172 Integers k that have a divisor d such that sigma(k) - d - k/d = 2*k. %C A366172 Note that this is not necessarily the same as just being the numbers that are strongly pseudoperfect and also 2-near perfect. This is because a number might be strongly pseudoperfect for one set of divisors which requires more than one redundant pair, while also being 2-near perfect due to removing a different pair. (This probably never actually happens.) - _Joshua Zelinsky_, Nov 09 2023 %H A366172 Vedant Aryan, Dev Madhavani, Savan Parikh, Ingrid Slattery, and Joshua Zelinsky, <a href="https://arxiv.org/abs/2310.01305">On 2-Near Perfect Numbers</a>, arXiv:2310.01305 [math.NT], 2023. See p. 13. %e A366172 156 is strongly 2-near perfect since sigma(156) = 392, 2*78 = 156, and 392-2-78 = 2*156. %t A366172 fQ[n_]:=AnyTrue[Table[DivisorSigma[1,n]-Divisors[n][[i]]-n/Divisors[n][[i]],{i,DivisorSigma[0,n]}],#==2*n&]; Select[Range[61000],fQ[#]&] (* _Ivan N. Ianakiev_, Oct 04 2023 *) %o A366172 (PARI) isok(k) = my(s=sigma(k)); fordiv(k, d, if (s-d-k/d == 2*k, return(1))); %Y A366172 Cf. A000203 (sigma). %Y A366172 Subsequence of A005835. %Y A366172 Intersection of A341475 and A334405. %K A366172 nonn %O A366172 1,1 %A A366172 _Michel Marcus_, Oct 03 2023 %E A366172 a(21) from _Ivan N. Ianakiev_, Oct 04 2023 %E A366172 a(22)-a(30) from _Amiram Eldar_, Sep 20 2024