cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366173 Triangle of coefficients of Caylerian polynomials.

This page as a plain text file.
%I A366173 #16 Jul 26 2025 20:28:10
%S A366173 1,1,1,2,1,8,4,1,24,42,8,1,64,276,184,16,1,162,1458,2298,732,32,1,400,
%T A366173 6844,21232,16000,2752,64,1,976,29952,164680,240350,99756,9992,128,1,
%U A366173 2368,125468,1142952,2882300,2320008,578420,35488,256
%N A366173 Triangle of coefficients of Caylerian polynomials.
%H A366173 Giulio Cerbai and Anders Claesson, <a href="https://arxiv.org/abs/2310.01270">Caylerian polynomials</a>, arXiv:2310.01270 [math.CO], 2023. See p. 11.
%H A366173 Giulio Cerbai and Anders Claesson, <a href="https://arxiv.org/abs/2411.08426">Enumerative aspects of Caylerian polynomials</a>, arXiv:2411.08426 [math.CO], 2024. See p. 2.
%e A366173 Triangle begins:
%e A366173   1
%e A366173   1
%e A366173   1 2
%e A366173   1 8 4
%e A366173   1 24 42 8
%e A366173   1 64 276 184 16
%e A366173   ...
%e A366173 Because polynomials are: 1; 1; 1 + 2t; 1 + 8t + 4t^2; 1 + 24t + 42t^2 + 8t^3; 1 + 64t + 276t^2 + 184t^3 + 16t^4; ...
%o A366173 (Python)
%o A366173 from itertools import product
%o A366173 def cayley_permutations(n):
%o A366173     return [p for p in product(range(n), repeat=n) if len(set(p)) == max(p)+1]
%o A366173 for n in range(1, 9):
%o A366173     a = [0] * n
%o A366173     for p in cayley_permutations(n):
%o A366173         a[sum(x>y for x,y in zip(p, p[1:]))] += 1
%o A366173     print(a[::-1]) # _Andrei Zabolotskii_, Jul 26 2025
%Y A366173 Cf. A000670 (row sums), A365449 (alternating row sums). Column 1 seems to be twice A048776.
%K A366173 nonn,tabf
%O A366173 0,4
%A A366173 _Michel Marcus_, Oct 03 2023
%E A366173 Rows 6-9 from _Andrei Zabolotskii_, Jul 26 2025