This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366192 #25 Jan 28 2024 10:52:33 %S A366192 2,2,2,4,3,3,4,2,2,6,4,4,6,2,3,6,6,3,2,8,4,6,5,5,6,4,8,2,2,10,3,9,4,8, %T A366192 6,6,8,4,9,3,10,2,2,12,4,10,6,8,7,7,8,6,10,4,12,2,3,12,5,10,6,9,9,6, %U A366192 10,5,12,3,2,14,4,12,6,10,8,8,10,6,12,4,14,2 %N A366192 Pairs (i, j) of noncoprime positive integers sorted first by i + j then by i. %C A366192 The rows of A290600 interleaved term by term with the reversed rows of A290600. - _Peter Munn_, Jan 28 2024 %H A366192 Paolo Xausa, <a href="/A366192/b366192.txt">Table of n, a(n) for n = 1..9886</a> %e A366192 The first few pairs are, seen as an irregular triangle (where rows with a prime index are empty (and are therefore missing)): %e A366192 [2, 2], %e A366192 [2, 4], [3, 3], [4, 2], %e A366192 [2, 6], [4, 4], [6, 2], %e A366192 [3, 6], [6, 3], %e A366192 [2, 8], [4, 6], [5, 5], [6, 4], [ 8, 2], %e A366192 [2, 10], [3, 9], [4, 8], [6, 6], [ 8, 4], [ 9, 3], [10, 2], %e A366192 [2, 12], [4, 10], [6, 8], [7, 7], [ 8, 6], [10, 4], [12, 2], %e A366192 [3, 12], [5, 10], [6, 9], [9, 6], [10, 5], [12, 3], %e A366192 ... %e A366192 There are A016035(n) pairs in row n. %p A366192 aList := proc(upto) local F, P, n, t, count; %p A366192 P := NULL; count := 0: %p A366192 for n from 2 while count < upto do %p A366192 F := select(t -> igcd(t, n - t) <> 1, [$1..n-1]); %p A366192 P := P, seq([t, n - t], t = F); %p A366192 count := count + nops([F]) od: %p A366192 ListTools:-Flatten([P]) end: %p A366192 aList(16); %t A366192 A366192row[n_]:=Select[Array[{#,n-#}&,n-1],!CoprimeQ[First[#],Last[#]]&]; %t A366192 Array[A366192row,20,2] (* _Paolo Xausa_, Nov 28 2023 *) %o A366192 (Python) %o A366192 from math import gcd %o A366192 from itertools import chain, count, islice %o A366192 def A366192_gen(): # generator of terms %o A366192 return chain.from_iterable((i,n-i) for n in count(2) for i in range(1,n) if gcd(i,n-i)>1) %o A366192 A366192_list = list(islice(A366192_gen(),30)) # _Chai Wah Wu_, Oct 10 2023 %Y A366192 Cf. A016035, A290600 (first bisection), A352911 (complement). %K A366192 nonn,look,tabf,easy %O A366192 1,1 %A A366192 _Peter Luschny_, Oct 10 2023