This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366219 #32 Nov 10 2023 10:42:44 %S A366219 1,3,91,325,2093,1001,12025,1045,4945,6391,189,455,245,11825,128843, %T A366219 368809,273,1295,14495,37961,252263,91375,595,13013,46189,104951, %U A366219 63875,136345,42237,22253,192647,18655,8225,194545,200629,192907,27625,1911,464783,27797 %N A366219 Smallest positive integer whose smallest coprime divisor shift is n. %C A366219 A nonnegative number s is a coprime divisor shift of n if GCD(d + s, n) = 1 for all divisors d of n. The coprime divisor shift of n is the infimum of the set of all nonnegative coprime divisor shifts of n. %C A366219 Conjecture. Every positive integer s is the coprime divisor shift of a positive integer. %H A366219 M. Farrokhi D. G., <a href="/A366219/b366219.txt">Table of n, a(n) for n = 0..1000</a> %e A366219 a(0) = 1 for GCD(1 + 0, 1) = 1. %e A366219 a(1) = 3 for GCD(1 + 1, 3) = GCD(3 + 1, 3) = 1 but GCD(1 + 1, 2) > 1. %e A366219 a(2) = 91 for GCD(d + 2, 91) = 1 for all divisors d = 1, 7, 13, 91 of 91, GCD(13 + 1, 91) > 1, and 91 is the smallest number with this property. %o A366219 (PARI) %o A366219 isds(k,s)={fordiv(k,d,if(gcd(d+s, k)<>1, return(0))); 1} %o A366219 findds(k)={for(s=0, k-1, if(isds(k,s), return(s))); -1} %o A366219 a(n)={for(k=1, oo, if(isds(k,n) && findds(k)==n, return(k)))} \\ _Andrew Howroyd_, Oct 05 2023 %Y A366219 Cf. A366251, A366330. %K A366219 nonn %O A366219 0,2 %A A366219 _M. Farrokhi D. G._, Oct 05 2023