This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366245 #13 Jan 09 2025 15:44:26 %S A366245 1,1,1,4,1,1,1,4,9,1,1,4,1,1,1,1,1,9,1,4,1,1,1,4,25,1,9,4,1,1,1,1,1,1, %T A366245 1,36,1,1,1,4,1,1,1,4,9,1,1,1,49,25,1,4,1,9,1,4,1,1,1,4,1,1,9,4,1,1,1, %U A366245 4,1,1,1,36,1,1,25,4,1,1,1,1,1,1,1,4,1 %N A366245 The largest infinitary divisor of n that is a term of A366243. %C A366245 First differs from A335324 at n = 256. %H A366245 Amiram Eldar, <a href="/A366245/b366245.txt">Table of n, a(n) for n = 1..10000</a> %F A366245 Multiplicative with a(p^e) = p^A063695(e). %F A366245 a(n) = n / A366244(n). %F A366245 a(n) >= 1, with equality if and only if n is a term of A366242. %F A366245 a(n) <= n, with equality if and only if n is a term of A366243. %F A366245 From _Peter Munn_, Jan 09 2025: (Start) %F A366245 a(n) = max({k in A366243 : A059895(k, n) = k}). %F A366245 a(n) = Product_{k >= 0} A352780(n, 2k+1). %F A366245 Also defined by: %F A366245 - for n in A046100, a(n) = A008833(n); %F A366245 - a(n^4) = (a(n))^4; %F A366245 - a(A059896(n,k)) = A059896(a(n), a(k)). %F A366245 Other identities: %F A366245 a(n) = sqrt(A366244(n^2)). %F A366245 a(A059897(n,k)) = A059897(a(n), a(k)). %F A366245 a(A225546(n)) = A225546(A248101(n)). %F A366245 (End) %t A366245 f[p_, e_] := p^BitAnd[e, Sum[2^k, {k, 1, Floor@ Log2[e], 2}]]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A366245 (PARI) s(e) = -sum(k = 1, e, (-2)^k*floor(e/2^k)); %o A366245 a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^s(f[i,2]));} %Y A366245 Cf. A063695, A335324, A366242, A366243, A366244. %Y A366245 See the formula section for the relationships with A008833, A046100, A059895, A059896, A059897, A225546, A248101, A352780. %K A366245 nonn,easy,mult %O A366245 1,4 %A A366245 _Amiram Eldar_, Oct 05 2023