cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366246 The number of infinitary divisors of n that are "Fermi-Dirac primes" (A050376) and terms of A366242.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 1, 1, 0, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 0, 2, 1, 1, 1, 3, 1, 2, 2, 2, 2, 0, 1, 2, 2, 2, 1, 3, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Amiram Eldar, Oct 05 2023

Keywords

Crossrefs

Programs

  • Mathematica
    s[0] = 0; s[n_] := s[n] = s[Floor[n/4]] + If[OddQ[Mod[n, 4]], 1, 0]; f[p_, e_] := s[e]; a[1] = 0; a[n_] := Plus @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    s(e) = if(e>3, s(e\4)) + e%2 \\ after Charles R Greathouse IV at A139351
    a(n) = vecsum(apply(s, factor(n)[, 2]));

Formula

Additive with a(p^e) = A139351(e).
a(n) = A064547(n) - A366247(n).
a(n) = A064547(A366244(n)).
a(n) >= 0, with equality if and only if n is in A366243.
a(n) <= A064547(n), with equality if and only if n is in A366242.
Sum_{k=1..n} a(k) ~ n * (log(log(n)) + B + C), where B is Mertens's constant (A077761) and C = Sum_{p prime} f(1/p) = -0.25705126777012995187..., where f(x) = - x + Sum_{k>=0} (x^(4^k)/(1+x^(4^k))).