cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366253 Table read by antidiagonals: Place k points in general position on each side of a regular n-gon and join every pair of the n*(k+1) boundary points by a chord; T(n,k) (n >= 3, k >= 0) gives number of regions in the resulting planar graph.

Original entry on oeis.org

1, 13, 4, 82, 67, 11, 307, 406, 206, 24, 841, 1441, 1216, 489, 50, 1891, 3796, 4211, 2835, 995, 80, 3718, 8299, 10901, 9672, 5671, 1802, 154, 6637, 15982, 23536, 24780, 19139, 10196, 3052, 220, 11017, 28081, 44906, 53109, 48686, 34166, 17011, 4810, 375
Offset: 3

Views

Author

Keywords

Comments

"In general position" implies that the internal lines (or chords) formed from the n*k edge points only have simple intersections; there is no interior points where three or more such chords meet. Note that for even-n n-gons, with n>=6, the chords from the n corner points do create non-simple intersections.
Note that although the number of regions with a given number of edges in the graph will vary as the edge points change position, the total number of regions will stay constant as long as all internal vertices created from the edge-point chords remain simple.

Examples

			The table begins:
1, 13, 82, 307, 841, 1891, 3718, 6637, 11017, 17281, 25906, 37423, 52417,...
4, 67, 406, 1441, 3796, 8299, 15982, 28081, 46036, 71491, 106294, 152497,...
11, 206, 1216, 4211, 10901, 23536, 44906, 78341, 127711, 197426, 292436,...
24, 489, 2835, 9672, 24780, 53109, 100779, 175080, 284472, 438585, 648219,...
50, 995, 5671, 19139, 48686, 103825, 196295, 340061, 551314, 848471, 1252175,...
80, 1802, 10196, 34166, 86480, 183770, 346532, 599126, 969776, 1490570,...
154, 3052, 17011, 56611, 142696, 302374, 569017, 982261, 1588006, 2438416,...
220, 4810, 26705, 88495, 222400, 470270, 883585, 1523455, 2460620, 3775450,...
375, 7305, 40096, 132243, 331431, 699535, 1312620, 2260941, 3648943, 5595261,...
444, 10509, 57810, 190263, 475980, 1003269, 1880634, 3236775, 5220588, 8001165,...
781, 14938, 81082, 265747, 663391, 1396396, 2615068, 4497637, 7250257,...
952, 20335, 110439, 361354, 900844, 1894347, 3544975, 6093514, 9818424,...
1456, 27391, 147421, 480931, 1197076, 2514781, 4702741, 8079421, 13013056,...
1696, 35716, 192552, 627484, 1560352, 3275556, 6122056, 10513372,...
.
.
.
		

Crossrefs

Cf. A367118 (first row), A367121 (second row), A007678 (first column), A367183 (vertices), A367190 (edges).

Formula

T(n,k) = A367190(n,k) - A367183(n,k) + 1 by Euler's formula.
Conjectured:
T(3,k) = A367118(k) = (9/4)*k^4 + 3*k^3 + (15/4)*k^2 + 3*k + 1.
T(4,k) = A367121(k) = (17/2)*k^4 + 19*k^3 + (43/2)*k^2 + 14*k + 4.
T(5,k) = (45/2)*k^4 + 60*k^3 + 70*k^2 + (85/2)*k + 11.
T(6,k) = (195/4)*k^4 + (285/2)*k^3 + (687/4)*k^2 + 102*k + 24.
T(7,k) = (371/4)*k^4 + 287*k^3 + (1421/4)*k^2 + 210*k + 50.
T(8,k) = 161*k^4 + 518*k^3 + 655*k^2 + 388*k + 80.
T(9,k) = 261*k^4 + 864*k^3 + (2223/2)*k^2 + (1323/2)*k + 154.
T(10,k) = (1605/4)*k^4 + (2715/2)*k^3 + (7085/4)*k^2 + 1060*k + 220.