This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366264 #10 Oct 06 2023 14:14:27 %S A366264 0,1,3,2,5,4,15,7,6,14,17,13,51,16,12,8,85,11,255,19,18,50,257,22,10, %T A366264 84,9,49,771,21,1285,25,48,254,20,28,3855,256,86,52,4369,55,13107,87, %U A366264 23,770,21845,59,30,31,252,253,65535,26,54,82,258,1284,65537,62,196611,3854,53,42,80,81,327685,259,768,61,983055 %N A366264 Inverse of A366263, where A366263 is the Doudna sequence permuted by Blue code. %H A366264 Antti Karttunen, <a href="/A366264/b366264.txt">Table of n, a(n) for n = 1..8192</a> %H A366264 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %H A366264 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A366264 a(n) = A193231(A156552(n)). %F A366264 For all n >= 0, a(A366263(n)) = n, and for all n >= 1, A366263(a(n)) = n. %F A366264 For all n >= 2, 1+A268389(a(n)) = A055396(n). %o A366264 (PARI) %o A366264 A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552 %o A366264 A193231(n) = { my(x='x); subst(lift(Mod(1, 2)*subst(Pol(binary(n), x), x, 1+x)), x, 2) }; %o A366264 A366264(n) = A193231(A156552(n)); %Y A366264 Cf. A156552, A193231, A366263 (inverse map). %Y A366264 Cf. A055396, A268389. %K A366264 nonn %O A366264 1,3 %A A366264 _Antti Karttunen_, Oct 06 2023