This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366271 #9 Oct 06 2023 10:53:01 %S A366271 1,3,8,4,8,9,2,0,1,2,6,5,9,8,6,8,9,0,4,1,7,8,6,1,1,0,6,0,7,5,7,1,2,8, %T A366271 1,3,5,8,3,0,4,8,1,4,8,9,2,9,7,6,3,9,7,7,7,0,9,4,7,5,2,2,6,5,5,0,8,5, %U A366271 4,7,9,4,0,9,7,1,1,2,6,2,8,5,5,9,6,5,6,4,0,4,5,8,7,7,0,7,8,9,5,7,6,8,4,9,7 %N A366271 Decimal expansion of limit_{n->oo} Product_{k=1..n} ((k/n)^(k/n) + (1 - k/n)^(k/n))^(1/n). %C A366271 Limit_{n->oo} Product_{k=1..n} (k/n)^(k/n^2) = exp(-1/4). %F A366271 Equals exp(-1/4 + Integral_{x=0..1} log(1 + (1/x - 1)^x) dx). %F A366271 Conjecture: Limit_{n->oo} (1/A366271^n) * Product_{k=1..n} ((k/n)^(k/n) + (1 - k/n)^(k/n)) = 1/sqrt(2). %e A366271 1.38489201265986890417861106075712813583048148929763977709475... %t A366271 RealDigits[Exp@NIntegrate[Log[1+(1/r-1)^r], {r, 0, 1}, WorkingPrecision->120] * Exp[-1/4], 10, 105][[1]] %Y A366271 Cf. A323575. %K A366271 nonn,cons %O A366271 1,2 %A A366271 _Vaclav Kotesovec_, Oct 06 2023