This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366274 #48 Dec 09 2023 07:07:45 %S A366274 1,2,2,3,4,4,4,5,6,7,8,9,10,10,10,13,13,13,14,14,15,15,16,18,20,20,19, %T A366274 19,18,22,24,24,25,27,27,27,29,28,29,30,31,31,33,33,32,34,37,39,38,39, %U A366274 40,40,41,42,42,43,42,43,43,43 %N A366274 a(n) is the least k such that prime(n+1+k) >= prime(n)+prime(n+1). %C A366274 a(n) is the number of primes between prime(n) and prime(n) + prime(n+1). %C A366274 Conjecture: for n >= 3, a(n) < n. %H A366274 Patrick Butler, <a href="/A366274/b366274.txt">Table of n, a(n) for n = 1..10000</a> %F A366274 a(n) = A000720(A001043(n)-1)-n = A000720(A076273(n+1))-n. - _Paolo Xausa_, Dec 09 2023 %e A366274 For n = 5 prime(n) = 11. prime(5) + prime(6) = 11+13=24. The 4th prime after 13 is 29 which is the next prime after 13 greater than or equal to 24. So a(5) = 4. %p A366274 R:= 1: pn:= 2: pn1:= 3: p:=5: m:= 4: pp:= 7: %p A366274 for n from 2 to 100 do %p A366274 pn:= pn1; pn1:= nextprime(pn1); %p A366274 while pp <= pn + pn1 do m:= m+1; pp:= nextprime(pp); od; %p A366274 R:= R, m-n-1; %p A366274 od: %p A366274 R; # _Robert Israel_, Oct 31 2023 %t A366274 A366274[n_]:=PrimePi[Prime[n]+Prime[n+1]-1]-n;Array[A366274,100] (* _Paolo Xausa_, Dec 09 2023 *) %o A366274 (Python) %o A366274 m=0 %o A366274 #list here is a list of prime numbers A000040. %o A366274 def a(n): %o A366274 global list %o A366274 sum= list[n]+list[n+1] %o A366274 i=n+2 %o A366274 while True: %o A366274 if(list[i]>=sum): %o A366274 m=i %o A366274 break %o A366274 i=i+1 %o A366274 k = m-(n+1) %o A366274 return k %o A366274 # %o A366274 #calculate the terms of the sequence a(n). %o A366274 seq = [] %o A366274 for n in range(0,firstN): %o A366274 seq.append(a(n)) %o A366274 (PARI) a(n) = my(k=1, q=prime(n)+prime(n+1)); while(prime(n+k) < q, k++); k; \\ _Michel Marcus_, Oct 06 2023 %Y A366274 Cf. A000720, A001043, A076273, A098084, A098085. %K A366274 nonn %O A366274 1,2 %A A366274 _Patrick Butler_, Oct 05 2023