This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366276 #9 Oct 06 2023 21:24:12 %S A366276 0,1,3,2,7,6,15,4,5,14,31,12,63,30,11,8,127,10,255,28,23,62,511,24,13, %T A366276 126,9,60,1023,22,2047,16,47,254,27,20,4095,510,95,56,8191,46,16383, %U A366276 124,19,1022,32767,48,29,26,191,252,65535,18,55,120,383,2046,131071,44,262143,4094,39,32,111,94,524287,508,767,54 %N A366276 Permutation of nonnegative integers: a(n) = A057889(A243071(n)). %H A366276 Antti Karttunen, <a href="/A366276/b366276.txt">Table of n, a(n) for n = 1..8192</a> %H A366276 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %H A366276 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %o A366276 (PARI) %o A366276 A030101(n) = if(n<1,0,subst(Polrev(binary(n)),x,2)); %o A366276 A057889(n) = if(!n,n,A030101(n/(2^valuation(n,2))) * (2^valuation(n, 2))); %o A366276 A243071(n) = if(n<=2, n-1, my(f=factor(n), p, p2=1, res=0); for(i=1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p*p2*(2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); ((3<<#binary(res\2))-res-1)); \\ (Combining programs given in A156552 and A054429) %o A366276 A366276(n) = A057889(A243071(n)); %Y A366276 Cf. A057889, A243071, A366275 (inverse map), A366277 (fixed points of map n -> a(n)). %K A366276 nonn %O A366276 1,3 %A A366276 _Antti Karttunen_, Oct 06 2023