This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366281 #9 Oct 07 2023 08:48:27 %S A366281 0,1,2,1,3,2,1,1,4,3,1,1,1,2,1,1,5,4,1,1,2,1,1,1,1,3,1,1,1,2,1,1,6,5, %T A366281 1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,4,1,1,2,1,1,1,1,3,1,1,1,2,1,1,7,6,1,1, %U A366281 2,1,1,1,3,1,1,1,1,2,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,1,1,1,2,1,1,1,1 %N A366281 a(n) = largest exponent m for which a representation of the form A366275(n) = k^m exists (for some k). a(0) = 0 by convention. %H A366281 Antti Karttunen, <a href="/A366281/b366281.txt">Table of n, a(n) for n = 0..65537</a> %H A366281 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A366281 a(n) = A052409(A366275(n)). %F A366281 a(n) = A365805(A057889(n)). %o A366281 (PARI) %o A366281 A030101(n) = if(n<1,0,subst(Polrev(binary(n)),x,2)); %o A366281 A057889(n) = if(!n,n,A030101(n/(2^valuation(n,2))) * (2^valuation(n, 2))); %o A366281 A163511(n) = if(!n, 1, my(p=2, t=1); while(n>1, if(!(n%2), (t*=p), p=nextprime(1+p)); n >>= 1); (t*p)); %o A366281 A366275(n) = A163511(A057889(n)); %o A366281 A052409(n) = { my(k=ispower(n)); if(k, k, n>1); }; %o A366281 A366281(n) = A052409(A366275(n)); %Y A366281 Cf. A052409, A057889, A365805, A366275, A366278 [where a(n) = A052409(n)]. %K A366281 nonn %O A366281 0,3 %A A366281 _Antti Karttunen_, Oct 06 2023