This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366292 #11 Oct 06 2023 21:22:52 %S A366292 1,-1,-1,-1,-1,-1,-1,-1,-2,-3,-1,1,-1,-5,-3,-1,-1,0,-1,9,-5,-9,-1,11, %T A366292 -4,-11,-4,13,-1,5,-1,-1,-9,-15,-5,6,-1,-17,-11,5,-1,21,-1,21,-2,-21, %U A366292 -1,5,-6,-8,-15,25,-1,22,-9,7,-17,-27,-1,3,-1,-29,14,-1,-11,11,-1,33,-21,-3,-1,16,-1,-35,-8,37,-9,13 %N A366292 Dirichlet inverse of A353271, where A353271(n) is the numerator of n / A005940(1+(3*A156552(n))). %H A366292 Antti Karttunen, <a href="/A366292/b366292.txt">Table of n, a(n) for n = 1..16384</a> %H A366292 <a href="/index/Pri#prime_indices">Index entries for sequences computed from indices in prime factorization</a> %F A366292 a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A353271(n/d) * a(d). %o A366292 (PARI) %o A366292 A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); }; %o A366292 A156552(n) = { my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res }; %o A366292 A332449(n) = A005940(1+(3*A156552(n))); %o A366292 A353271(n) = (n / gcd(n, A332449(n))); %o A366292 memoA366292 = Map(); %o A366292 A366292(n) = if(1==n,1,my(v); if(mapisdefined(memoA366292,n,&v), v, v = -sumdiv(n,d,if(d<n,A353271(n/d)*A366292(d),0)); mapput(memoA366292,n,v); (v))); %Y A366292 Cf. A332449, A353271. %Y A366292 Cf. A038838 (positions of even terms), A122132 (of odd terms), A353627 (parity of terms). %Y A366292 Cf. also A209635, A342417, A354347, A354823, A359432, A359433, A359577 for other sequences that are equal modulo 2. %K A366292 sign %O A366292 1,9 %A A366292 _Antti Karttunen_, Oct 06 2023