This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366301 #5 Oct 08 2023 09:25:50 %S A366301 1,21,791,44541,3344327,313883661,35351663831,4645129190541, %T A366301 697553757742247,117844709608925901,22120757207544654071, %U A366301 4567542244067740041741,1028853921587420129556167,251065459281889114259025741,65978874409961267115296383511,18577448234544937135538443584141 %N A366301 Expansion of e.g.f. 1 / (-5 + Sum_{k=1..6} exp(-k*x)). %F A366301 a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n,k) * (1 + 2^k + ... + 6^k) * a(n-k). %t A366301 nmax = 15; CoefficientList[Series[1/(-5 + Sum[Exp[-k x], {k, 1, 6}]), {x, 0, nmax}], x] Range[0, nmax]! %t A366301 a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + 2^k + 3^k + 4^k + 5^k + 6^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}] %Y A366301 Cf. A001553, A004704, A005923, A319509, A366298, A366299, A366300, A366302. %K A366301 nonn %O A366301 0,2 %A A366301 _Ilya Gutkovskiy_, Oct 06 2023