This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366302 #5 Oct 08 2023 09:26:00 %S A366302 1,28,1428,108976,11088924,1410452848,215282610348,38335940184976, %T A366302 7801807561068444,1786227911508713008,454397569178386774668, %U A366302 127153351764004535348176,38815768300684586111354364,12836619471891836987050169968,4571701128215207034965181098988,1744488930796462320024115801858576 %N A366302 Expansion of e.g.f. 1 / (-6 + Sum_{k=1..7} exp(-k*x)). %F A366302 a(0) = 1; a(n) = Sum_{k=1..n} (-1)^(k+1) * binomial(n,k) * (1 + 2^k + ... + 7^k) * a(n-k). %t A366302 nmax = 15; CoefficientList[Series[1/(-6 + Sum[Exp[-k x], {k, 1, 7}]), {x, 0, nmax}], x] Range[0, nmax]! %t A366302 a[0] = 1; a[n_] := a[n] = Sum[(-1)^(k + 1) Binomial[n, k] (1 + 2^k + 3^k + 4^k + 5^k + 6^k + 7^k) a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 15}] %Y A366302 Cf. A001554, A004705, A005923, A319509, A366298, A366299, A366300, A366301. %K A366302 nonn %O A366302 0,2 %A A366302 _Ilya Gutkovskiy_, Oct 06 2023