A366307 Powerful numbers that are products of "Fermi-Dirac primes" (A050376) that are powers of primes with exponents that are powers of 4.
1, 16, 81, 625, 1296, 2401, 10000, 14641, 28561, 38416, 50625, 65536, 83521, 130321, 194481, 234256, 279841, 456976, 707281, 810000, 923521, 1048576, 1185921, 1336336, 1500625, 1874161, 2085136, 2313441, 2825761, 3111696, 3418801, 4477456, 4879681, 5308416, 6765201
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..11659 (terms below 10^17)
Crossrefs
Programs
-
Mathematica
mdQ[n_] := AllTrue[IntegerDigits[n, 4], # < 2 &]; Select[Range[10^6], # == 1 || AllTrue[FactorInteger[#][[;; , 2]], EvenQ[#1] && mdQ[#1] &] &] (* or *) seq[max_] := Module[{ps = {2}, p, s = {1}, s1, s2, emax}, While[ps[[-1]]^4 < max, AppendTo[ps, NextPrime[ps[[-1]]]]]; Do[p = ps[[k]]; emax = Floor[Log2[Floor[Log[p, max]]]]; Do[s1 = {1, p^(2^e)}; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= max &]; s = Union[s, s2], {e, 2, emax, 2}], {k, 1, Length[ps]}]; s]; seq[10^7]
-
PARI
ismd(n) = {my(d = digits(n, 4)); for(i = 1, #d, if(d[i] > 1, return(0))); 1;} is(n) = {my(e = factor(n)[,2]); for(i = 1, #e, if(e[i]%2 || !ismd(e[i]), return(0))); 1;}
Comments