This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366309 #8 Oct 07 2023 08:47:42 %S A366309 1,1,1,2,1,1,1,2,2,1,1,2,1,1,1,1,1,2,1,2,1,1,1,2,2,1,2,2,1,1,1,1,1,1, %T A366309 1,4,1,1,1,2,1,1,1,2,2,1,1,1,2,2,1,2,1,2,1,2,1,1,1,2,1,1,2,2,1,1,1,2, %U A366309 1,1,1,4,1,1,2,2,1,1,1,1,1,1,1,2,1,1,1 %N A366309 The number of infinitary divisors of n that are terms of A366243. %H A366309 Amiram Eldar, <a href="/A366309/b366309.txt">Table of n, a(n) for n = 1..10000</a> %F A366309 Multiplicative with a(p^e) = 2^A139352(e). %F A366309 a(n) = 2^A366247(n). %F A366309 a(n) = A037445(n)/A366308(n). %F A366309 a(n) = A037445(A366245(n)). %F A366309 a(n) >= 1, with equality if and only if n is in A366242. %F A366309 a(n) <= A037445(n), with equality if and only if n is in A366243. %F A366309 Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Product_{p prime} (1 - 1/p)*(1 + Sum_{k>=1} 2^A139352(k)/p^k) = 1.44736831993091923328... . %t A366309 s[0] = 0; s[n_] := s[n] = s[Floor[n/4]] + If[Mod[n, 4] > 1, 1, 0]; f[p_, e_] := 2^s[e]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] %o A366309 (PARI) s(e) = if(e > 3, s(e\4)) + e%4\2 \\ after _Charles R Greathouse IV_ at A139352 %o A366309 a(n) = vecprod(apply(x -> 2^s(x), factor(n)[, 2])); %Y A366309 Cf. A037445, A139352, A366242, A366243, A366245, A366247, A366246, A366308. %K A366309 nonn,easy,mult %O A366309 1,4 %A A366309 _Amiram Eldar_, Oct 06 2023