cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366317 Number of unordered pairs of strict integer partitions of n.

This page as a plain text file.
%I A366317 #9 Oct 09 2023 12:58:23
%S A366317 1,1,1,3,3,6,10,15,21,36,55,78,120,171,253,378,528,741,1081,1485,2080,
%T A366317 2926,4005,5460,7503,10153,13695,18528,24753,32896,43956,57970,76245,
%U A366317 100576,131328,171405,223446,289180,373680,482653,619941,794430,1017451,1296855
%N A366317 Number of unordered pairs of strict integer partitions of n.
%F A366317 a(n) = A000217(A000009(n)).
%F A366317 Composition of A000009 and A000217.
%e A366317 The a(1) = 1 through a(7) = 15 unordered pairs of strict partitions:
%e A366317   {1,1}  {2,2}  {3,3}    {4,4}    {5,5}    {6,6}      {7,7}
%e A366317                 {3,21}   {4,31}   {5,32}   {6,42}     {7,43}
%e A366317                 {21,21}  {31,31}  {5,41}   {6,51}     {7,52}
%e A366317                                   {32,32}  {42,42}    {7,61}
%e A366317                                   {32,41}  {42,51}    {43,43}
%e A366317                                   {41,41}  {51,51}    {43,52}
%e A366317                                            {6,321}    {43,61}
%e A366317                                            {42,321}   {52,52}
%e A366317                                            {51,321}   {52,61}
%e A366317                                            {321,321}  {61,61}
%e A366317                                                       {7,421}
%e A366317                                                       {43,421}
%e A366317                                                       {52,421}
%e A366317                                                       {61,421}
%e A366317                                                       {421,421}
%t A366317 Table[Length[Select[Tuples[Select[IntegerPartitions[n], UnsameQ@@#&],2],OrderedQ]],{n,0,30}]
%Y A366317 For non-strict partitions we have A086737.
%Y A366317 The disjoint case is A108796, non-strict A260669.
%Y A366317 The ordered version is A304990, disjoint A032302.
%Y A366317 The ordered disjoint case is A365662.
%Y A366317 Excluding constant pairs gives A366132.
%Y A366317 A000041 counts integer partitions, strict A000009.
%Y A366317 A002219 and A237258 count partitions of 2n including a partition of n.
%Y A366317 A364272 counts sum-full strict partitions, sum-free A364349.
%Y A366317 Cf. A000712, A007582, A054440, A064914, A260664.
%K A366317 nonn
%O A366317 0,4
%A A366317 _Gus Wiseman_, Oct 08 2023