This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366317 #9 Oct 09 2023 12:58:23 %S A366317 1,1,1,3,3,6,10,15,21,36,55,78,120,171,253,378,528,741,1081,1485,2080, %T A366317 2926,4005,5460,7503,10153,13695,18528,24753,32896,43956,57970,76245, %U A366317 100576,131328,171405,223446,289180,373680,482653,619941,794430,1017451,1296855 %N A366317 Number of unordered pairs of strict integer partitions of n. %F A366317 a(n) = A000217(A000009(n)). %F A366317 Composition of A000009 and A000217. %e A366317 The a(1) = 1 through a(7) = 15 unordered pairs of strict partitions: %e A366317 {1,1} {2,2} {3,3} {4,4} {5,5} {6,6} {7,7} %e A366317 {3,21} {4,31} {5,32} {6,42} {7,43} %e A366317 {21,21} {31,31} {5,41} {6,51} {7,52} %e A366317 {32,32} {42,42} {7,61} %e A366317 {32,41} {42,51} {43,43} %e A366317 {41,41} {51,51} {43,52} %e A366317 {6,321} {43,61} %e A366317 {42,321} {52,52} %e A366317 {51,321} {52,61} %e A366317 {321,321} {61,61} %e A366317 {7,421} %e A366317 {43,421} %e A366317 {52,421} %e A366317 {61,421} %e A366317 {421,421} %t A366317 Table[Length[Select[Tuples[Select[IntegerPartitions[n], UnsameQ@@#&],2],OrderedQ]],{n,0,30}] %Y A366317 For non-strict partitions we have A086737. %Y A366317 The disjoint case is A108796, non-strict A260669. %Y A366317 The ordered version is A304990, disjoint A032302. %Y A366317 The ordered disjoint case is A365662. %Y A366317 Excluding constant pairs gives A366132. %Y A366317 A000041 counts integer partitions, strict A000009. %Y A366317 A002219 and A237258 count partitions of 2n including a partition of n. %Y A366317 A364272 counts sum-full strict partitions, sum-free A364349. %Y A366317 Cf. A000712, A007582, A054440, A064914, A260664. %K A366317 nonn %O A366317 0,4 %A A366317 _Gus Wiseman_, Oct 08 2023