This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A366318 #8 Oct 10 2023 09:30:07 %S A366318 4,6,9,10,12,14,15,21,22,25,26,30,33,34,35,38,39,40,46,49,51,55,57,58, %T A366318 62,63,65,69,70,74,77,82,84,85,86,87,91,93,94,95,106,111,112,115,118, %U A366318 119,121,122,123,129,133,134,141,142,143,145,146,154,155,158,159 %N A366318 Heinz numbers of integer partitions that are of length 2 or begin with n/2, where n is the sum of all parts. %C A366318 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %F A366318 Union of A001358 and A344415. %e A366318 The terms together with their prime indices begin: %e A366318 4: {1,1} 38: {1,8} 77: {4,5} %e A366318 6: {1,2} 39: {2,6} 82: {1,13} %e A366318 9: {2,2} 40: {1,1,1,3} 84: {1,1,2,4} %e A366318 10: {1,3} 46: {1,9} 85: {3,7} %e A366318 12: {1,1,2} 49: {4,4} 86: {1,14} %e A366318 14: {1,4} 51: {2,7} 87: {2,10} %e A366318 15: {2,3} 55: {3,5} 91: {4,6} %e A366318 21: {2,4} 57: {2,8} 93: {2,11} %e A366318 22: {1,5} 58: {1,10} 94: {1,15} %e A366318 25: {3,3} 62: {1,11} 95: {3,8} %e A366318 26: {1,6} 63: {2,2,4} 106: {1,16} %e A366318 30: {1,2,3} 65: {3,6} 111: {2,12} %e A366318 33: {2,5} 69: {2,9} 112: {1,1,1,1,4} %e A366318 34: {1,7} 70: {1,3,4} 115: {3,9} %e A366318 35: {3,4} 74: {1,12} 118: {1,17} %t A366318 prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A366318 Select[Range[100],Length[prix[#]]==2||MemberQ[prix[#],Total[prix[#]]/2]&] %Y A366318 The first condition alone is A001358, counted by A004526. %Y A366318 The complement of the first condition is A100959, counted by A058984. %Y A366318 The partitions with these Heinz numbers are counted by A238628. %Y A366318 The second condition alone is A344415, counted by A035363. %Y A366318 The complement of the second condition is A366319, counted by A086543. %Y A366318 A001222 counts prime factors with multiplicity. %Y A366318 A056239 adds up prime indices, row sums of A112798. %Y A366318 A322109 ranks partitions of n with no part > n/2, counted by A110618. %Y A366318 A334201 adds up all prime indices except the greatest. %Y A366318 A344296 solves for k in A001222(k) >= A056239(k)/2, counted by A025065. %Y A366318 Cf. A001414, A316413, A320924, A325044, A340387, A344414, A344416. %K A366318 nonn %O A366318 1,1 %A A366318 _Gus Wiseman_, Oct 08 2023