cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A366320 Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} without a subset summing to k.

This page as a plain text file.
%I A366320 #9 Oct 13 2023 11:47:13
%S A366320 1,2,2,3,4,4,3,6,6,7,8,8,6,6,9,11,11,14,14,15,16,16,12,12,9,17,17,20,
%T A366320 20,24,27,27,30,30,31,32,32,24,24,18,17,26,31,29,35,36,43,47,50,51,56,
%U A366320 59,59,62,62,63
%N A366320 Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} without a subset summing to k.
%e A366320 Triangle begins:
%e A366320    1
%e A366320    2  2  3
%e A366320    4  4  3  6  6  7
%e A366320    8  8  6  6  9 11 11 14 14 15
%e A366320   16 16 12 12  9 17 17 20 20 24 27 27 30 30 31
%e A366320   32 32 24 24 18 17 26 31 29 35 36 43 47 50 51 56 59 59 62 62 63
%e A366320 Row n = 3 counts the following subsets:
%e A366320   {}     {}     {}   {}     {}     {}
%e A366320   {2}    {1}    {1}  {1}    {1}    {1}
%e A366320   {3}    {3}    {2}  {2}    {2}    {2}
%e A366320   {2,3}  {1,3}       {3}    {3}    {3}
%e A366320                      {1,2}  {1,2}  {1,2}
%e A366320                      {2,3}  {1,3}  {1,3}
%e A366320                                    {2,3}
%t A366320 Table[Length[Select[Subsets[Range[n]],FreeQ[Total/@Subsets[#],k]&]],{n,8},{k,n*(n+1)/2}]
%Y A366320 Row lengths are A000217.
%Y A366320 The diagonal T(n,n) is A365377, complement A365376.
%Y A366320 The complement is counted by A365381.
%Y A366320 A000009 counts subsets summing to n.
%Y A366320 A000124 counts distinct possible sums of subsets of {1..n}.
%Y A366320 A124506 counts combination-free subsets, differences of A326083.
%Y A366320 A365046 counts combination-full subsets, differences of A364914.
%Y A366320 Cf. A007865, A085489, A093971, A103580, A151897, A326080, A364534, A365073, A365380.
%K A366320 nonn,tabf
%O A366320 1,2
%A A366320 _Gus Wiseman_, Oct 12 2023